
An Architecture Style 
for Android Security.

Boot_
Receiver

Storage_
Receiver

BootReceiver

CheckUpdateService

Choose_
Folder

Notification_
Service

Account_
Setting

Message_
ListAccounts

Remote_
Control_
Receiver

Attachment_
Provider

Email_
Address_List

Message_
Provider

SettingsActivity

Message_
Compose

Manage_
Identities

Unread_
Widget_
Provider

Edit_
Identities

PhotostreamActivity

Email_
Provider

Remote_
Control_
Service

MailService

ViewPhotoActivity

LoginActivity

PhotoStream

K9

Problem and Approach
Frameworks need to balance flexibility and 
security
• Flexibility supports diverse ecosystems
• Security supports safe ecosystems
How can we provide better framework support 
for enhancing both of these qualities?
• Mix of static and dynamic checks
• Base analysis on architecture models

Domain – Android as framework
• Intents allow flexible app communication
• Permissions protect resources
However, intents are a source of many 
vulnerabilities in Android
• Apps can be added/removed at run time so 

complete static check impossible
• Framework relies on plugins (apps) to check 

permissions for intents

Statically Check Apps, Dynamically Check Android
Approach Detail
Analyze app to produce architecture 

model. Check correctness.
Combine with models of other apps.
Statically analyze to detect potential 

vulnerabilities
Use results to focus run-time monitoring
 Use self-adaptation techniques to detect 
run time exploits and mitigate as they are 
detected

Many vulnerabilities can be detected statically, but dealing with them all reduces flexibility

Android Architecture Style
Used for static analysis and dynamic adaptation
• Static analysis can produce model
• Style constraints can check construction-time 

security, e.g.:
• Verify permission usage in apps
• Detect unintended implicit intent 

targets
• Data-flow and ownership analysis can pinpoint 

vulnerabilities, annotate model
• Self-adaptation uses architecture model to 

monitoring intent usage, adapt as necessary

Style Characteristics:
• Separate implicit and explicit 

intents to separate connectors
• Use groups to represent apps
• Single implicit event bus to make 

obvious global communication
• Permissions, intent filters, etc. 

represented as properties in the 
model

Bradley Schmerl,
schmerl@cs.cmu.edu

David Garlan
garlan@cs.cmu.edu

Jeffrey Gennari,
jsg@sei.cmu.edu


	Slide Number 1

