

An Assessment Methodology, Models For National Security Systems

Jennifer Guild, University of Idaho

The Model Methodology

- Provides an objective characterization of the system, not a checklist or grade
- Complementary to existing methodologies
- Provides mechanisms to map system evidence to mathematical models to represent assessment findings
- The models, and the results they yield, must be simple enough for non-computer scientists, nonmathematicians to understand because they provide a level playing field of understanding for those that implement them, as well as those that interpret their results
- Each stage correlates to the progression of the assessor's exposure to the system
 - Initial Exposure
 - System familiarization
 - Continuous Review
 - Assessment
 - Data correlation (Evidence to models)
- Each assessment is individualistic, so the number of stages will vary
- Content of the models will evolve from generalized to specific as the assessment progresses

Models

 (V_{T1})_n and (V_{O1})_n represent the set of technical and operational environment vulnerabilities for system s1 in state n, then: (V_{S1})_n = (V_{T1})_n U (V_{O1})_n

Additionally

 An operational environment is a situational instance or state, which reflects a physical characterization of the operational environments

• Threat (TR) is some combination of threat source (TS), it's capabilities (TC) with it's motivation(s) (TSM)

(TR_{S1}) _n = TS_{OrgCrime} x TSM_{Financial} x (TC_{LevelOfExpertise})_{Sophisticated}

 Probability (P) that an attack will occur with some level of success and certainty

 $(P_{S1})_n = PA_{AlmostCertain} \times PS_{HighlyLikely} \times PC_{HighlyCertain}$

• An attack vector (AV) is a physical mechanism or vector through which a threat source may exploit a vulnerability

 $(AV_{S1})_n = (AV_{O1})_n U (AV_{T1})_n$

• An impact (I) is the variable result of a threat exercising an exploit against a vulnerability via an attack vector

$$|I_{S1}\rangle_{r} = TR_{AdversaryState} U V_{SomeVulnerability} U AV_{Internet} U$$

($PA_{HighlyLikely} \times PS_{HighlyLikely} \times PC_{HighlyCertain}$)

- The use of the models increases
 objectiveness/explicitness, repeatability, and
 knowledge of system robustness from
 assessor to risk acceptor, as well as assessor
 to assessor
- Threats and probabilities are modeled together to represent their direct relationship
- The probability of attack models describe a threat source's desire to attack
- An asset's value is variable and based on perception:
 - Perceived importance to the mission
- Risk (R) is the probability of threat source(s) with the capability of exercising an attack vector to exploit a vulnerability for a specific motivation, the probability of success of that attack, the certainty of the knowledge

 $R = (TS \times TC \times TSM \times PA \times PS \times PC \times AV \times V)^+ U I^+$

- Perceived importance to the adversary
- Our ability to replace asset
- Time

