AN INTRODUCTION TO
SEPARATION LOGIC

John C. Reynolds
Carnegie Mellon University

High Confidence Software and Systems Conference
Linthicum, Maryland
May 21, 2009

(©2009 John C. Reynolds



A Program for In-place List Reversal

LREV € = nil;

while i = nildo (k:=[i4+ 1];[i+ 1] :=j;j:=i;i:=k).
To prove {list i} LREV {list o' j}, the invariant

Ja, B. listai Alist Bj A al) = af-3,

(where list ¢ | ' | = nil and list(a-) i & Jj. i < a,j A list o j)

IS inadequate.



An adequate invariant (in Hoare logic):

Ba, 8. listai Alist 8] Aal = al-g)
A (Vk. reachable(i, k) A reachable(j, k) = k = nil).

An adequate invariant (in separation logic):

(3, B. list i« list B)) A of) = af-8.

where x Is the separating conjunction.



To prove {list i * list v x} LREV {list al j * list v x} in Hoare
logic, we need the stronger invariant:

(Ja, B. list i Alist B A ozg = al-f)
A (Vk. reachable(i, k) A reachable(j, k) = k = nil)
A list v x
A (Vk. reachable(x, k)
A (reachable(i, k) V reachable(j, k)) = k = nil).

But in separation logic, we can use:

(Ja, B. list i * list B = list vy x) A onCr) = of-5).



Framing

Actually, in separation logic, from
{list i} LREV {list o' j},
we can use the frame rule to infer directly that

{listai * listyx} LREV {list ! * list v x}.



Overview of Separation Logic

e Low-level programming language
— Extension of simple imperative language

— Commands for allocating, accessing, mutating, and deal-
locating data structures

— Dangling pointer faults (if pointer is dereferenced)
e Program specification and proof
— Extension of Hoare logic
— Separating (independent, spatial) conjunction (*) and
Implication (—x)
e Inductive definitions over abstract structures



Early History

e Distinct Nonrepeating Tree Systems
(Burstall 1972)
e Adding Separating Conjunction to Hoare Logic
(Reynolds 1999, with flaws)
e Bunched Implication (Bl) Logics
(O’Hearn and Pym 1999)
e Intuitionistic Separation Logic
(Ishtiag and O’Hearn 2001, Reynolds 2000)
e Classical Separation Logic (Ishtiag and O’Hearn 2001)
e Adding Address Arithmetic (Reynolds 2001)



States

Without address arithmetic (old version):

Values = Integers U Atoms U Addresses
where Integers, Atoms, and Addresses are disjoint

nil € Atoms
Storesyy = V — Values

Heaps = U i, (A — Values™)
A C Addresses

Statesy = Storesy x Heaps
where V' is a finite set of variables.



With address arithmetic (new version):

Values = Integers
Atoms U Addresses C Integers
where Atoms and Addresses are disjoint
nil € Atoms
Storesyy = V — Values

Heaps = U sp, (A — Values)
A C Addresses

Statesy = Storesy x Heaps
where V is a finite set of variables.

(We assume that all but a finite number of nonnegative integers
are addresses.)



The Programming Language: An Informal View

The simple imperative language:

= skip

plus:

Allocation

Lookup

Mutation

Deallocation

- 1f — then — else —

x :=cons(1,2);

y = I[x];

x4+ 1] :=3;

dispose(x + 1)

Store :
Heap :

Store :
Heap :

Store :
Heap :

Store :
Heap :

Store :
Heap :

while — do —

x:3,y:4
empty

J
x:37,y. 4
37:1, 38:2
J
x:37,y:1
37:1, 38:2
Y
x:37,y:1
37:1, 38:3
Y
x:37,y:1
37:1



Note that:

e EXxpressions depend only upon the store.
— no side effects or nontermination.
— cons and [—] are parts of commands.

e Allocation is nondeterminate.



Memory Faults

Store: x:3,y:4

Heap : empty
Allocation x:=cons(1,2); (%

Store: x:37,y:.4

Heap: 37:1, 38:2
Lookup  y:=|[x]; J

Store: x:37,y:1

Heap: 37:1, 38:2
Mutation [x4+2]:=3: N2

abort

Faults can also be caused by out-of-range lookup or dealloca-
tion.



Assertions

Standard predicate calculus:

A \ — = \v/ -

plus:
e emp (empty heap)
The heap is empty.
o c— ¢ (singleton heap)
The heap contains one cell, at address e with contents ¢’.
® p1 * Do (separating conjunction)

The heap can be split into two disjoint parts such that pq
holds for one part and p» holds for the other.

® p1 —* Po (separating implication)
If the heap is extended with a disjoint part in which p1 holds,
then p> holds for the extended heap.



Some Abbreviations

def

er— — = Jx!. e— x’ where 2/ notfreein e
, def /
e —e —= er— e x true
def
er—e€e1,...,ep — er—ey] *x---xe+n—1+— ey
def
e—el,...,en — e—ey *x---xe+n—1—epy

iff e—eq1,...,en * true



Examples of Separating Conjunction

1. x — 3,y asserts that x points to an adjacent
pair of cells containing 3 and y.

2.y — 3, x asserts that y points to an adjacent
pair of cells containing 3 and x.

3. x— 3,y *x y— 3,x asserts that situations
(1) and (2) hold for separate parts of the heap.

4. x — 3,y Ay — 3, x asserts that situations
(1) and (2) hold for the same heap, which can
only happen if the values of x and y are the
same.

5. x — 3,y Ay — 3,x asserts that either
(3) or (4) may hold, and that the heap may
contain additional cells.




Rules and Axiom Schemata for x and —«
P1 * P2 < P2 * pP1
(p1 * p2) * P3 & p1 * (P2 * p3)
p *x emp < p
(pLVp2) * q& (p1 * @) V(P2 * q)
(pL Ap2) * = (p1 * @) AN(p2 * q)
(Jx. p1) * po> < Jz. (p1 * pp) when x not free in po
(Vz. p1) * po = Vx. (p1 * po) when z not free in po

P1 = P2 q1 = g2
P1 * g1 = P2 * Q2

(monotonicity)

% — : = —k
PL* P2 = P3  ((iving) P (p2 —* p3)
p1 = (p2 —* p3) p1 * p2 = p3.

(decurrying)




Two Unsound Axiom Schemata
p = p * p (Contraction — unsound)
eg.p:x—1
pP*xq=0p (Weakening — unsound)
eg.p:x—1
q:y+— 2



Some Axiom Schemata for +—
el|—>e’1/\62|—>e’2<:>61|—>e’1/\61=62/\e’1=6’2
e1 €] * ep— e, = e F e
emp < V. (x — —)
(e—e)Ap=(e—e€) x ((e—€) —p).

(Regrettably, these are far from complete.)



Specifications

e {p}c{q} (partial correctness)

Starting in any state in which p holds:
— No execution of ¢ aborts.

— When some execution of ¢ terminates in a final state,
then ¢ holds in the final state.



e [plc[q] (total correctness)

Starting in any state in which p holds:
— No execution of ¢ aborts.
— Every execution of c terminates.

— When some execution of ¢ terminates in a final state,
then ¢ holds in the final state.



The Differences with Hoare Logic

e Specifications are universally quantified implicitly over both
stores and heaps,

e Specifications are universally quantified implicitly over all
possible executions.

e Any execution (starting in a state satisfying p) that gives a
memory fault falsifies both partial and total specifications.
Thus:

e ¢ o \Well-specified programs don’t go wrong. e e e

— and memory-fault checking is unnecessary.



Enforcing Record Boundaries

The fact that specifications preclude memory faults acts in con-
cert with the indeterminacy of allocation to prohibit violations of
record boundaries. For example, in

co;x:=cons(1,2);¢c1;[x+2]:=7,

no allocation performed by the subcommand cg or ¢q can be
guaranteed to allocate the location x + 2.

As long as cg and c; terminate and ¢; does not modify x, the
above command may abort.

It follows that there is no postcondition that makes the specifica-
tion
{true} cg;x:=cons(1,2);c1;[x+2]:=7 {7}

valid.



On the Other Hand (Gluing Records)

fxim — %y =)
if y = x4 1 then skip else
if x=y+ 1 then x:=y else
(dispose x ; dispose y ; x :=cons(1,2))

{X =, _}'



Hoare’s Inference Rules

The command-specific inference rules of Hoare logic
remain sound, as do structural rules such as

e Strengthening Precedent

p=q {q}c{r}
{p}c{r}.

e Weakening Consequent

{p}c{q} q=r

{p}edrt.




e Existential Quantification (Ghost Variable Elimination)

{p} c{q}

{Fv. p} ¢ {Fv. q},
where v IS not free in c.

e Conjunction

{p} ci{a1}  {p}c{ao}

{p} c{q1 A q2},

e Substitution

{r} c{q}
{p/d} (c/6) {q/6},
where ¢ is the substitutionvy — eq,...,vn — €en, v1,...,0n
are the variables occurring free in p, ¢, or ¢, and, if v; is mod-

Ified by ¢, then ¢; is a variable that does not occur free in any
other e;.




The Failure of the Rule of Constancy

On the other hand,
e Rule of Constancy

{ry c{q}
{pAryci{gnr,
where no variable occurring free in r is modified by c.

IS unsound, since, for example
{x— —}[x] : =4 {x— 4}
{x— —Ay—3}[x] =4{x—4Ay— 3}
fails when x = .




The Frame Rule

Instead, we have the
e Frame Rule (O’'Hearn)

{r} c{q;
{p * r}c{q x r},
where no variable occurring free in r is modified by c.

The frame rule is the key to “local reasoning” about the heap:

To understand how a program works, it should be pos-
sible for reasoning and specification to be confined to
the cells that the program actually accesses. The value
of any other cell will automatically remain unchanged.
(O’Hearn)



Local Reasoning

e The set of variables and heap cells that may actually be
used by a command (starting from a given state) is called
its footprint.

o If {p} c {q} isvalid, then p will assert that the heap contains
all the cells in the footprint of ¢ (excluding the cells that are
freshly allocated by c).

e If p asserts that the heap contains only cells in the footprint
of ¢, then {p} ¢ {q} is a local specification.

e If ¢/ contains ¢, it may have a larger footprint described, say,
by p x r. Then the frame rule is needed to move from

{p} c{q}to{p * r}c{q * r}.



Inference Rules for Mutation

e Local

{er —} [e] :i=¢€ {e— €}

e Globhal

{(er> =) * r}le]:i=¢€{(ere) * r}.

e Backward Reasoning

{(e—= =) x ((er—€) —p)} [e] :=¢ {p}.




Inference Rules for Deallocation

e Local

{e — —} dispose e {emp}.

e Global, Backwards Reasoning

{(e — —) * r} dispose e {r}.



Inference Rules for Nonoverwriting Allocation

e Local
{emp} v := cons(e) {v — €},
: . _ def
where vis notfreeine = eq,...,en.
e Global

{r} v:=cons(e) {(v—¢€) * r},
where v is not free in e or r.
(We postpone more complex rules with quantifiers.)



An Example: Relative Pointers

{emp}

x .= cons(a,a) ;

{x — a,a}

y := cons(b,b) ;
{(x—a,a) * (y — b, b)}
{(x—a,=) x (y—b,—)}

x+ 1] ==y —x;
{(x—a,y—x) x (y—b,—)}
ly+1] :=x—vy,

{(x—a,y—x) * (y = b,x—y)}
{Jo. (x — a,0) * (x4+o0+— b, —0)}.



Singly-linked Lists

list cvi:
| — 1 aD o,
T /nil
IS defined by
list €1 det emp A i = nil
list (2-0)i = 3. i — a, « listaj,
where

e c is the empty sequence.
e «-[3 Is the concatenation of o followed by g.
One can also derive an emptyness test:

istai= (i =nil & a =¢).



S-expressions (a la LISP)

T € S-exps Iff
T € Atoms
or 7 = (71 - ™) wWhere 71, 7o € S-exps.



Representing S-expressions by Trees (no sharing)

For 7 € S-exps, we define the assertion

tree 7 (1)
by structural induction:
treea (i) iffemp Ai = a

tree (71 - ™) (7) iff
Fi1,45. i+ 11,10 x tree 1 (i1) * tree 7o (in).



Representing S-expressions by Dags (with sharing)

For 7 € S-exps, we define

dag 7 (7)
by:
daga (i) iff i = a

dag (7‘1 . ’7'2) (Z) Iff
Ji1,90. 1+ i71,1> * (dag 71 (i1) Adagm (in)).



Proving the Schorr-Waite Marking Algorithm (Yang)

e \We abandon address arithmetic, and require all records to
contain two address fields and two boolean fields.

e Only reachable cells are in heap.



Let

def
allocated(x) = x— —, —, —, —

def
markedR = Vx. allocated(x) = x — —, —, —, true

noDangling(x) det (x = nil) V allocated(x)

noDanglingR il vx,Lr.(x = Lr,—,—)=

noDangling(l) A noDangling(r).
Then the invariant of the program is

noDanglingR A noDangling(t) A noDangling(p) A

(Iistl\/larkedNodesR(stack, p) *
(restoredlistR(stack, t) — spansR(STree, root))) A

(markedR * (unmarkedR A (Vx. allocated(x) =
(reach(t, x) V reachRightChildInList(stack, x))) ) )



Proving Schorr-Waite (continued)

noDanglingR A noDangling(t) A noDangling(p) A
(IistMarkedNodesR(stack, p) *

(restoredListR(stack,t) — spansR(STree, root))) A
(markedR * (unmarkedR A (‘v’x. allocated(x) =
(reach(t, x) V reachRightChildInList(stack, x))) ) )

restoredListR(stack, t): listMarkedNodesR (stack, p):

root root




