
Analysis-based verification:
A programmer-oriented approach to the
assurance of mechanical program properties

Tim Halloran

HCSS 6 May 2011

tim.halloran@surelogic.com
SureLogic, Inc.

1

Overview

• Vision: Create focused analysis-based verification for software
quality attributes1 as a scalable2 and adoptable3 approach to
verifying4 consistency of code with its design intent5

1. Quality attributes: Including safe concurrency with locks, data
confinement to thread roles, static layer structure, many others

• Each has its combination of contributing constituent analyses — e.g.,
effects upper bounds, mostly-unique references, and binding context

2. Scalable: Significantly adapt constituent analyses to enable
composition

3. Adoptable: Before-lunch test (incremental reward principle)

4. Verification: No false negatives from analysis targeted to an
attribute and a model

5. Design intent: Fragmentary models/specifications focused on
quality attributes

2

Overview

• The focus of this talk is concept of sound combined analyses, an
enabling component of analysis-based verification, including

• Meta-theory to establish soundness of the approach of
combining multiple constituent static analyses into an aggregate
developer-focused analysis

• Reminiscent, with respect to goals — not particulars, of Nelson-Oppen
cooperating decision procedures

• User experience and tool engineering approach designed to
address adoption and usability criteria of professional
development teams

• Developer ROI, including before-lunch test

• Field validation in collaboration with professional engineers
on diverse commercial and open source code bases

• Deployed major systems including vendor application server code,
library and framework code, and MapReduce infrastructure

3

Sound combined analyses

Overview

Meta-theory

User experience &
tool engineering

Field validation

Overall vision:
Analysis-based

verification

informs

enables

validates

informs

Analysis work
of

Boyland,
Greenhouse,
Sutherland

builds uponvalidates

4

This work in context

Fluid Research Project
Scherlis, Boyland, Chan, Greenhouse,

Halloran, Sutherland

Commercialization
Java* Analysis Capability

Prototype Tools, Technology, People

JSure
An analysis-based verification tool

Flashlight
A concurrency-focused dynamic
analysis tool

Sierra
A platform for the management of
results from multiple heuristic-
based static analysis tools

5

Related work

• Fluid project at Carnegie Mellon – sound static analysis, promises

• Scherlis, Boyland, Greenhouse, Chan (formative)

• Sutherland (evaluative)

• Heuristics-based static analysis tools

• FindBugs [Hovemeyer, Pugh]; MC [Engler, Chelf, Chou, et al.]

• Spec# – practicable verification of real-world code

• Specification: preconditions, postconditions, invariants

• Tool verification: Boogie verifier

• Microsoft Research [Leino, Barnett, et al.]

• Builds upon the work ESC/Modula and ESC/Java (Larch)

• JML [Leavens, et al.]

• Verifiers: LOOP (PVS), KeY, Jive – automation, language subset

• Languages that support specification

• SPARC Ada – up front commitment

6

Outline

• Design intent and heuristics-based static analysis tools

• What is analysis-based verification?

• Sound combined analyses

• Supporting verification

• An aside on the meta-theory

• Supporting model expression

• Supporting contingencies

• Evaluation

• Field trials

• JSure Modeling Language

• Summary

7

Heuristics-based static analysis tools

• Examples: FindBugs, PMD,
MC (lots more...)

• Scan code and report
violations of “bug patterns”

• Successful finding defects in
real-world code

/**
 * java.lang.annotation.AnnotationTypeMismatchException

 * @author Josh Bloch
 */
private final String foundType;
public String foundType() {
 return this.foundtype();
}

How many infinite recursive loops can FindBugs find in
your code?

 5 Sun’s JDK 1.5.0_01
10 Sun’s AppServer 8.1 2005Q1
14 IBM’s WebSphere 6.0.2
13 JBoss 4.0.2
 3 Eclipse 3.1M7
 2 Tomcat 5.5.9

Everyone makes stupid mistakes. What do you use
to help you find and fix yours?

8

False positives and false negatives

ActualityActuality

Fault No fault

Tool says
Fault True positive False positive

Tool says
No fault False negative True negative

9

Intent sharpens heuristic analysis

• Why? To reduce false positive results

• “The static analysis crowd jokes that too high a percentage of
false positives leads to 100% false negatives because that’s what
you get when people stop using the tool.” [Chess, McGraw]

• Best result: “I didn’t find anything wrong”

• Does not answer the question: “Is this design intent fully
consistent with my code?”

• That is, there may be something wrong that it didn’t find

public @NonNull String convert(@NonNull Object o) {
	 return o.toString();
}

Answerable by verification: classical theorem proving,
sound static analysis, etc.

10

What is analysis-based verification?

• Tool-supported verification, based upon sound static analysis

• Prior work developed annotations and a set of verifying analyses

• Boyland: Uniqueness, effects

• Greenhouse: Lock use policy, effects

• Sutherland: Thread use policy

Lock Model Annotations
@RegionLock
@RequiresLock
@ReturnsLock
@GuardedBy

Uniqueness Annotations
@Unique
@Borrowed

Effects Annotations
@RegionEffects

Region Annotations
@Region
@InRegion
@Aggregate
@AggregateInRegion

Lock Analysis

Effects Analysis

MayEqual

Binding Context
Analysis

Uniqueness Analysis

Work done by the Fluid
research group at
Carnegie Mellon

11

Sound combined analyses

• Creates verification results by combining analysis results

• Multiple constituent program analyses (“plug-in”)

• Analyses report fragmentary results

• Verification results are always with respect to some some
specification — usually narrowly focused with respect to attribute
and code region

• What do we mean by sound?

• For program analyses: Sound (also called conservative) means no
false negatives. A judgement of inconsistency may mean “not
sure” [Rice]

• For our approach: Sound means results derivable our proof
calculus are ‘consistent’ in a semantics of the analysis results

• Demonstrated by proof in Halloran’s dissertation (Chapter 2)

We introduce our approach via a “tour” of its features
12

A running example

• BoundedFIFO from Apache Log4j

• The program enqueues an event into the buffer and returns

• A dispatcher thread removes events from the buffer and
processes them (as events become available)

• Not exemplary Java — but typical of (some) code we encountered
in the field

• Annotations reflect the use of the class within Log4j

Program Threads

AsyncAppender

put(LoggingEvent)

BoundedFIFO

Dispatcher Thread

Dispatcher

get : LoggingEvent

13

Annotated code

@RegionLock("FIFOLock is this protects Instance")
public class BoundedFIFO {
 @Unique
 @Aggregate
 LoggingEvent[] buf;

 int numElts = 0, first = 0, next = 0, size;

 @Unique("return") public BoundedFIFO(int size) { ... }

 @RequiresLock("FIFOLock") public LoggingEvent get() { ... }
 @RequiresLock("FIFOLock") public void put(LoggingEvent o) { ... }
 @RequiresLock("FIFOLock") public int getMaxSize() { ... }
 @RequiresLock("FIFOLock") public int length() { ... }
 @RequiresLock("FIFOLock") public boolean wasEmpty() { ... }
 @RequiresLock("FIFOLock") public boolean wasFull() { ... }
 @RequiresLock("FIFOLock") public boolean isFull() { ... }
}

14

Supporting verification

• Prior approach: “compiler-like” output →

• Analyses report:

• “Points of consistency”

• “Points of inconsistency”

• Limitations:

• Relationships among promises are lost

• Impact of “X” on consistency of other
promises difficult to understand

• Fails to answer the question,
“Is my model consistent with the code?”

14 CHAPTER 1. INTRODUCTION

Lock Policy Analysis Results for BoundedFIFO

Finding About Description
f1 + r1 thread-confined access to numElts at line 8
f2 + r1 thread-confined access to first at line 8
f3 + r1 thread-confined access to next at line 8
f4 + r1 thread-confined access to size at line 13
f5 + r1 thread-confined access to buf at line 14
f6 + r1 FIFOLock held for access to numElts at line 19
f7 + r1 FIFOLock held for access to buf at line 20
f8 + r1 FIFOLock held for access to first at line 20
f9 + r1 FIFOLock held for access to buf[first] at line 20
f10 + r1 FIFOLock held for access to first at line 21
f11 + r1 FIFOLock held for access to size at line 21
f12 + r1 FIFOLock held for access to first at line 21
f13 + r1 FIFOLock held for access to numElts at line 22
f14 + r1 FIFOLock held for access to numElts at line 28
f15 + r1 FIFOLock held for access to size at line 28
f16 + r1 FIFOLock held for access to buf at line 29
f17 + r1 FIFOLock held for access to next at line 29
f18 + r1 FIFOLock held for access to buf[next] at line 29
f19 + r1 FIFOLock held for access to next at line 30
f20 + r1 FIFOLock held for access to size at line 30
f21 + r1 FIFOLock held for access to next at line 30
f22 + r1 FIFOLock held for access to numElts at line 31
f23 + r1 FIFOLock held for access to size at line 36
f24 + r1 FIFOLock held for access to numElts at line 39
f25 + r1 FIFOLock held for access to numElts at line 42
f26 + r1 FIFOLock held for access to numElts at line 45
f27 + r1 FIFOLock held for access to size at line 45
f28 + r1 FIFOLock held for access to numElts at line 48
f29 + r1 FIFOLock held for access to size at line 48

Uniqueness Analysis Results for BoundedFIFO

Finding About Description
f30 + r6 reference held by buf is unique (i.e., unaliased)
f31 + r10 constructor does not alias this
f32 + r10 super() promises not to alias this

Figure 1.5: “Compiler-like” analysis results for BoundedFIFO compilation unit. (Top) The analysis
results reported from the Greenhouse lock policy analysis [?]. (Bottom) The analysis results reported
from the Boyland uniqueness analysis [?, ?]. Each analysis result is labeled (e.g., f1) for identification.
A finding of “+” indicates a “point of consistency” between the code and the promise the result is
about (no inconsistencies were found in this code). The promise the result is about is referred to by
an r with a subscript that indicates the line of code where the promise appears in Figure 1.3 (e.g., r1
refers to the @RegionLock promise at line 1 in Figure 1.3). A short description is reported to explain
the result to the analysis tool user.

16 CHAPTER 1. INTRODUCTION

50 public class Dispatcher {

51

52 private final BoundedFIFO fifo;

53

54 Dispatcher(BoundedFIFO value) {

55 fifo = value;

56 }

57

58 LoggingEvent get() {

59 synchronized (this) { // Broken - acquires the wrong lock

60 LoggingEvent e;

61 while (fifo.length() == 0) {

62 try {

63 fifo.wait();

64 } catch (InterruptedException ignore) { }

65 }

66 e = fifo.get();

67 if (fifo.wasFull()) {

68 fifo.notify();

69 }

70 return e;

71 }

72 }

73 ...

74 }

Lock Policy Analysis Results for Dispatcher

Finding About Description
f33 × r38 FIFOLock not held when invoking length() at line 61
f34 × r17 FIFOLock not held when invoking get() at line 66
f35 × r44 FIFOLock not held when invoking wasFull() at line 67

Figure 1.6: Code and “compiler-like” analysis results for the Dispatcher class used by the dispatcher
thread to read events from the BoundedFIFO instance and handles them (e.g., writes them out to a disk
file). (Top) Elided Java code for the Dispatcher class. This class holds the wrong lock, this rather
than fifo, when invoking methods on the shared BoundedFIFO instance. (Bottom) The analysis
results reported from the Greenhouse lock policy analysis [?]. A finding of “×” indicates a “point of
inconsistency” between the code and the promise the result is about (no consistencies were found in
this code). Line and result numbering is continued starting after the last line of the BoundedFIFO

code to keep references unambiguous.

Issue of scale: 2,146 analysis results
on our first field trial, ~12K analysis

results on Electric)
15

Lost relationships among promises

• The length() method lock is not synchronized on this, so f24 “trusts”
the @RequiresLock("FIFOLock") promise at line 38

14 CHAPTER 1. INTRODUCTION

Lock Policy Analysis Results for BoundedFIFO

Finding About Description
f24 + r1 FIFOLock held for access to numElts at line 39
f25 + r1 FIFOLock held for access to numElts at line 42
f26 + r1 FIFOLock held for access to numElts at line 45
f27 + r1 FIFOLock held for access to size at line 45
f28 + r1 FIFOLock held for access to numElts at line 48
f29 + r1 FIFOLock held for access to size at line 48

Uniqueness Analysis Results for BoundedFIFO

Finding About Description
f30 + r6 reference held by buf is unique (i.e., unaliased)
f31 + r10 constructor does not alias this
f32 + r10 super() promises not to alias this

Figure 1.5: “Compiler-like” analysis results for BoundedFIFO compilation unit. (Top) The analysis
results reported from the Greenhouse lock policy analysis [53]. (Bottom) The analysis results reported
from the Boyland uniqueness analysis [20, 21]. Each analysis result is labeled (e.g., f1) for identifica-
tion. A finding of “+” indicates a “point of consistency” between the code and the promise the result
is about (no inconsistencies were found in this code). The promise the result is about is referred to by
an r with a subscript that indicates the line of code where the promise appears in Figure 1.3 (e.g., r1
refers to the @RegionLock promise at line 1 in Figure 1.3). A short description is reported to explain
the result to the analysis tool user.

tool user. We consider this limitation in the context of the following three examples from the

findings listed in Figure 1.5:

• Analysis result f4 is a consistent finding about the write to the field size that occurs at

line 13. Notice, however, that at this point in the program FIFOLock (i.e., this) is not

held. As we discussed above, object construction is a special case, and indeed the lock

analysis “trusts” that the @Unique("return") promise at line 10 on the BoundedFIFO

constructor is consistent with the code.

• Analysis result f24 is a consistent finding about the read of the field numElts that

occurs at line 39 in the implementation of the length() method. Notice, however, that

within this method FIFOLock (i.e., this) is not acquired. This result “trusts” that the

@RequiresLock("FIFOLock") promise about the length() method is consistent with

any code that invokes the method.

• Analysis result f32 is a consistent finding that the implicit call to the superclass construc-

tor (i.e., the no-argument constructor for java.lang.Object) respects the @Unique("return")

promise at line 10 that the receiver will not be aliased. The no-argument constructor for

 1 @RegionLock("FIFOLock is this protects Instance")
 2 public class BoundedFIFO {

10 @Unique("return")
11 public BoundedFIFO(int size) {
12 if (size < 1) throw new IllegalArgumentException();
13 this.size = size;
14 buf = new LoggingEvent[size];
15 }

38 @RequiresLock("FIFOLock")
39 public int length() { return numElts; }

16

Unknown impact of an “X” result

• The get() method in the Dispatcher class acquires the wrong lock at
line 59, so f38 reports that FIFOLock is not held when invoking
fifo.length() at line 61

• What is the impact of this inconsistent result? r1 is not verifiable!

 1 @RegionLock("FIFOLock is this protects Instance")
 2 public class BoundedFIFO {

38 @RequiresLock("FIFOLock")
39 public int length() { return numElts; }

50 public class Dispatcher {

58 private LoggingEvent get() {
59 synchronized (this) { // Broken - acquires the wrong lock
60 LoggingEvent e;
61 while (fifo.length() == 0) {
 ...

16 CHAPTER 1. INTRODUCTION

50 public class Dispatcher {

51

52 private final BoundedFIFO fifo;

53

54 Dispatcher(BoundedFIFO value) {

55 fifo = value;

56 }

57

58 LoggingEvent get() {

59 synchronized (this) { // Broken - acquires the wrong lock

60 LoggingEvent e;

61 while (fifo.length() == 0) {

62 try {

63 fifo.wait();

64 } catch (InterruptedException ignore) { }

65 }

66 e = fifo.get();

67 if (fifo.wasFull()) {

68 fifo.notify();

69 }

70 return e;

71 }

72 }

73 ...

74 }

Lock Policy Analysis Results for Dispatcher

Finding About Description
f33 × r38 FIFOLock not held when invoking length() at line 61
f34 × r17 FIFOLock not held when invoking get() at line 66
f35 × r44 FIFOLock not held when invoking wasFull() at line 67

Figure 1.6: Code and “compiler-like” analysis results for the Dispatcher class used by the dispatcher
thread to read events from the BoundedFIFO instance and handles them (e.g., writes them out to a disk
file). (Top) Elided Java code for the Dispatcher class. This class holds the wrong lock, this rather
than fifo, when invoking methods on the shared BoundedFIFO instance. (Bottom) The analysis
results reported from the Greenhouse lock policy analysis [53]. A finding of “×” indicates a “point of
inconsistency” between the code and the promise the result is about (no consistencies were found in
this code). Line and result numbering is continued starting after the last line of the BoundedFIFO

code to keep references unambiguous.

f24

17

Not answering the right question

• Are the annotations consistent with the code?

• All the analysis results about r1 are all
consistent

• BUT the use of the “wrong lock” in the get()
method in the Dispatcher class causes r1 to be
indirectly inconsistent

14 CHAPTER 1. INTRODUCTION

Lock Policy Analysis Results for BoundedFIFO

Finding About Description
f1 + r1 thread-confined access to numElts at line 8
f2 + r1 thread-confined access to first at line 8
f3 + r1 thread-confined access to next at line 8
f4 + r1 thread-confined access to size at line 13
f5 + r1 thread-confined access to buf at line 14
f6 + r1 FIFOLock held for access to numElts at line 19
f7 + r1 FIFOLock held for access to buf at line 20
f8 + r1 FIFOLock held for access to first at line 20
f9 + r1 FIFOLock held for access to buf[first] at line 20
f10 + r1 FIFOLock held for access to first at line 21
f11 + r1 FIFOLock held for access to size at line 21
f12 + r1 FIFOLock held for access to first at line 21
f13 + r1 FIFOLock held for access to numElts at line 22
f14 + r1 FIFOLock held for access to numElts at line 28
f15 + r1 FIFOLock held for access to size at line 28
f16 + r1 FIFOLock held for access to buf at line 29
f17 + r1 FIFOLock held for access to next at line 29
f18 + r1 FIFOLock held for access to buf[next] at line 29
f19 + r1 FIFOLock held for access to next at line 30
f20 + r1 FIFOLock held for access to size at line 30
f21 + r1 FIFOLock held for access to next at line 30
f22 + r1 FIFOLock held for access to numElts at line 31
f23 + r1 FIFOLock held for access to size at line 36
f24 + r1 FIFOLock held for access to numElts at line 39
f25 + r1 FIFOLock held for access to numElts at line 42
f26 + r1 FIFOLock held for access to numElts at line 45
f27 + r1 FIFOLock held for access to size at line 45
f28 + r1 FIFOLock held for access to numElts at line 48
f29 + r1 FIFOLock held for access to size at line 48

Uniqueness Analysis Results for BoundedFIFO

Finding About Description
f30 + r6 reference held by buf is unique (i.e., unaliased)
f31 + r10 constructor does not alias this
f32 + r10 super() promises not to alias this

Figure 1.5: “Compiler-like” analysis results for BoundedFIFO compilation unit. (Top) The analysis
results reported from the Greenhouse lock policy analysis [?]. (Bottom) The analysis results reported
from the Boyland uniqueness analysis [?, ?]. Each analysis result is labeled (e.g., f1) for identification.
A finding of “+” indicates a “point of consistency” between the code and the promise the result is
about (no inconsistencies were found in this code). The promise the result is about is referred to by
an r with a subscript that indicates the line of code where the promise appears in Figure 1.3 (e.g., r1
refers to the @RegionLock promise at line 1 in Figure 1.3). A short description is reported to explain
the result to the analysis tool user.

16 CHAPTER 1. INTRODUCTION

50 public class Dispatcher {

51

52 private final BoundedFIFO fifo;

53

54 Dispatcher(BoundedFIFO value) {

55 fifo = value;

56 }

57

58 LoggingEvent get() {

59 synchronized (this) { // Broken - acquires the wrong lock

60 LoggingEvent e;

61 while (fifo.length() == 0) {

62 try {

63 fifo.wait();

64 } catch (InterruptedException ignore) { }

65 }

66 e = fifo.get();

67 if (fifo.wasFull()) {

68 fifo.notify();

69 }

70 return e;

71 }

72 }

73 ...

74 }

Lock Policy Analysis Results for Dispatcher

Finding About Description
f33 × r38 FIFOLock not held when invoking length() at line 61
f34 × r17 FIFOLock not held when invoking get() at line 66
f35 × r44 FIFOLock not held when invoking wasFull() at line 67

Figure 1.6: Code and “compiler-like” analysis results for the Dispatcher class used by the dispatcher
thread to read events from the BoundedFIFO instance and handles them (e.g., writes them out to a disk
file). (Top) Elided Java code for the Dispatcher class. This class holds the wrong lock, this rather
than fifo, when invoking methods on the shared BoundedFIFO instance. (Bottom) The analysis
results reported from the Greenhouse lock policy analysis [?]. A finding of “×” indicates a “point of
inconsistency” between the code and the promise the result is about (no consistencies were found in
this code). Line and result numbering is continued starting after the last line of the BoundedFIFO

code to keep references unambiguous.

 1 @RegionLock("FIFOLock is this protects Instance")
 2 public class BoundedFIFO {

To be “safe” the programmer has to fix
all inconsistent analysis results

?

18

Overcoming these limitations

• The drop-sea proof management system

• What is proof management?

• The manipulation of formal proofs and proof fragments (lemmas) as
data structures

• Separation of overall proof mgmt from constituent analyses
• Proof mgmt: combining fragmentary results, abductive inference

(proposed promises), contingency management (red dot), truth
maintenance (incremental recomputation)

• Independent of language semantics!

• Analyses: embody aspects of programming language semantics, creating
a plug-in model (cf. Nelson-Oppen)

• Challenges

• Scale-up to very large proofs

• Usability and visualization/debuggability

• Enabling composition w.r.t. multiple underlying analyses, multiple
components being “composed,” and new bits of design intent being
added (expanding the scope of consideration w.r.t. models)

19

Overcoming lost relationships

20 CHAPTER 1. INTRODUCTION

Analysis Results for BoundedFIFO

Finding About Prerequisite Description
f24 + r1 r38 FIFOLock held for access to numElts at line 39
...
f32 + r10 r78 super() promises not to alias this

75 <package name="java.lang">

76 <class name="Object">

77 <constructor>

78 <Unique>return</Unique>

79 ...

80 </constructor>

81 </class>

82 </package>

Analysis Results for java.lang.Object

Finding About Prerequisite Description
f36 + r78 � constructor does not alias this
...

Figure 1.7: (Top) Elided analysis results for BoundedFIFO reporting an explicit prerequisite assertion
for each“point of consistency” found in the code by the constituent analysis. (Middle) Elided promises
about the no-argument constructor of the java.lang.Object class (the superclass of BoundedFIFO).
The @Unique("return") promise is made as a “standoff annotation” using XML structures because
Object is part of the Java standard library and is typically used in binary form. Annotation via
XML is equivalent to direct annotation of code. This promise, referred to as r78, is the prerequisite
assertion for the analysis result f32. (Bottom) Elided analysis results for java.lang.Object. The
result about the @Unique("return") promise on the no-argument constructor does not require a
prerequisite assertion, the symbol � is used to express this lack of a prerequisite. (As is presented
in the next chapter, the prerequisite assertion is logical formula that constrains the verification of
the promise the result is about, �, which represents the tautology, indicates no constraint.) Line and
result numbering is continued starting after the last line of the Dispatcher code to keep references
unambiguous.

 1 @RegionLock("FIFOLock is this protects Instance")
 2 public class BoundedFIFO {

10 @Unique("return")
11 public BoundedFIFO(int size) {
12 if (size < 1) throw new IllegalArgumentException();
13 this.size = size;
14 buf = new LoggingEvent[size];
15 }

38 @RequiresLock("FIFOLock")
39 public int length() { return numElts; }

20

Drop-sea graph: Tracking relationships

• Tabular analysis results are modeled as
 nodes a graph (tree if no recursion)

• Drops are the nodes in the graph

1.3. OUR APPROACH: ANALYSIS-BASED VERIFICATION 21

r1 — @RegionLock("FIFOLock is this protects Instance")

r10 — @Unique("return") r38 — @RequiresLock("FIFOLock")

r78 — @Unique("return")

f4 — thread-confined access to size at line 13 f24 — FIFOLock held for access to numElts at line 39

f33 — FIFOLock not held when invoking length() at line 61

f32 — super() promises not to alias this

f31 — constructor does not alias this

f36 — constructor does not alias this

Figure 1.8: A portion of the drop-sea graph for the BoundedFIFO and Dispatcher classes after the lock
policy and uniqueness analyses have reported their results for the promises and code in Figure 1.3
and Figure 1.6. Promise drops, which are independent of any specific analysis, are represented by
ovals. Result drops, which are reported from constituent analyses, are represented as rectangles. A
green “+” indicates a consistent analysis result. A red “×” indicates an inconsistent analysis result
(shown in gray). A directed edge from a promise drop to a result drop indicates that the promise is a
prerequisite assertion for that result. A directed edge from a result drop to a promise drop indicates
that the result is about that promise.

r1 — @RegionLock("FIFOLock is this protects Instance")

r10 — @Unique("return") r38 — @RequiresLock("FIFOLock")

r78 — @Unique("return")

f4 — thread-confined access to size at line 13

f33 — FIFOLock not held when invoking length() at line 61

f32 — super() promises not to alias this

f31 — constructor does not alias this

f36 — constructor does not alias this

f24 — FIFOLock held for access to numElts at line 39

Figure 1.9: A portion of the drop-sea graph for the BoundedFIFO and Dispatcher classes showing
computed verification results. A small green “+” (to the lower-left) indicates model–code consistency.
A small red “×” (to the lower-left) indicates a failure to prove model–code consistency (shown in gray).

Legend
Promise drop
Result drop
Consistent analysis result
Inconsistent analysis result
is a prerequisite assertion
is about

21

Overcoming unknown impact of an

• Traversals of the graph yield
aggregate verification results,
which are stored on the drops

• The graph structure reveals
relationships to the human
users

1.3. OUR APPROACH: ANALYSIS-BASED VERIFICATION 21

r1 — @RegionLock("FIFOLock is this protects Instance")

r10 — @Unique("return") r38 — @RequiresLock("FIFOLock")

r78 — @Unique("return")

f4 — thread-confined access to size at line 13 f24 — FIFOLock held for access to numElts at line 39

f33 — FIFOLock not held when invoking length() at line 61

f32 — super() promises not to alias this

f31 — constructor does not alias this

f36 — constructor does not alias this

Figure 1.8: A portion of the drop-sea graph for the BoundedFIFO and Dispatcher classes after the lock
policy and uniqueness analyses have reported their results for the promises and code in Figure 1.3
and Figure 1.6. Promise drops, which are independent of any specific analysis, are represented by
ovals. Result drops, which are reported from constituent analyses, are represented as rectangles. A
green “+” indicates a consistent analysis result. A red “×” indicates an inconsistent analysis result
(shown in gray). A directed edge from a promise drop to a result drop indicates that the promise is a
prerequisite assertion for that result. A directed edge from a result drop to a promise drop indicates
that the result is about that promise.

r1 — @RegionLock("FIFOLock is this protects Instance")

r10 — @Unique("return") r38 — @RequiresLock("FIFOLock")

r78 — @Unique("return")

f4 — thread-confined access to size at line 13

f33 — FIFOLock not held when invoking length() at line 61

f32 — super() promises not to alias this

f31 — constructor does not alias this

f36 — constructor does not alias this

f24 — FIFOLock held for access to numElts at line 39

Figure 1.9: A portion of the drop-sea graph for the BoundedFIFO and Dispatcher classes showing
computed verification results. A small green “+” (to the lower-left) indicates model–code consistency.
A small red “×” (to the lower-left) indicates a failure to prove model–code consistency (shown in gray).

Legend
Proof of model-code consistency (verified)
Can’t prove model-code consistency
Promise drop
Result drop
Consistent analysis result
Inconsistent analysis result
is a prerequisite assertion
is about

22

Answering the big question

• The lock use policy, FIFOLock, is
inconsistent with the code

• The question to be addressed by the
developer is why?

• The JSure tool presents a view of the
drop-sea graph to the user →

• There is “good news” and “bad news”

• To work toward consistency the user
follows the trail of “X”s

22 CHAPTER 1. INTRODUCTION

Figure 1.10: A JSure tool view showing a portion of the verification results for the BoundedFIFO and
Dispatcher classes. The results show the 29 accesses to protected state reported in Figure 1.5. The
tool view is expanded to show how it displays the drop-sea graph nodes shown in Figure 1.9. A small
red “×” (to the lower-left) indicates a failure to prove model–code consistency.

23

Tool interaction toward consistency (1)

Double-clicking on the inconsistent result (bottom) brings
up the unprotected call in the source code of Dispatcher

24

Tool interaction toward consistency (2)

The programmer determines that the code is wrong and fixes line 59

22 CHAPTER 1. INTRODUCTION

Figure 1.10: A JSure tool view showing a portion of the verification results for the BoundedFIFO and
Dispatcher classes. The results show the 29 accesses to protected state reported in Figure 1.5. The
tool view is expanded to show how it displays the drop-sea graph nodes shown in Figure 1.9. A small
red “×” (to the lower-left) indicates a failure to prove model–code consistency.

JSure re-runs its analysis

25

An aside on the meta-theory

• New meta-theory to support the
drop-sea proof management
model (Halloran)

• Overall assertion of soundness
involves multiple formalisms

• (Not a Hoare Logic, but rather a
logic that links chains of
evidence)

• Feasible prerequisites for the
constituent analyses to be
combined

• Basis of abductive reasoning to
“fill in” missing pieces of a model
(next topic...)

56 CHAPTER 2. FOUNDATIONS

2.5. PROOF CALCULUS FOR PROMISE VERIFICATION 23

{q4 ∨ (q5 ∧ q6)} ({f8},Φ) {r4} (2.5)

{q1 ∧ � ∧ �} ({f1, f2, f3},Φ) {r8}{q2 ∧ �} ({f4, f5},Φ) {r9}{q3 ∧ �} ({f6, f7},Φ) {r10}{q7 ∧ � ∧ �} ({f9, f10, f11},Φ) {r18} (2.6)

{q8 ∧ �} ({f12, f13},Φ) {r19}{q9 ∧ �} ({f14, f15},Φ) {r20}{�} ({f16},Φ) {r29}{�} ({f17},Φ) {r30}{�} ({f18},Φ) {r31}
Figure 2.13: The elements contained in the set of promise verification conditions, V , ob-
tained from applying Definition 2.5.3 to the analysis output shown in Figure 2.12 about the
util.concurrent code in Figure 2.4.

which we call V , is a set of promise verification triples such that V = vc(R,Φ) where
vc(R,Φ) = {pvc(r,R,Φ) � r ∈ only consistent results(R)},

only consistent results(R) = {r � (+, r,ψ) ∈ R} � {r � (−, r,ψ) ∈ R},
R is a set of analysis results, and Φ is a set of promise matching formulas.

These definitions create a promise verification triple for each real promise that has only

consistent analysis results reported about it.

For example, consider the set of verification conditions, V , shown in Figure 2.13, determined

by applying Definition 2.5.3 to the analysis output from our util.concurrent example. The

promise verification condition for the real promise r20 is {q9 ∧ �} ({f14, f15},Φ) {r20}. This

triple is an element of V because r20 is a real promise and neither of its two results reported an

inconsistency (−). The two analysis results for r20, f13 and f14, are listed in Figure 2.12 and

the conjunction of their prerequisites is the promise logic formula q9 ∧ �.
There is no promise verification condition in V for r10, the @Unique("return") promise on

line 10 of Figure 2.4. Definition 2.5.3 excluded this element because one of the two analysis

results reported about this promise in Figure 2.12, f7, is inconsistent.

Definition 2.5.4. If Φ is a set of promise logic formulas, we define seq(Φ) to be the sequence

of formulas derived from the set Φ.

Verify Promises

Generate Verification Conditions

Match Promises

Searches the annotated
program for promises that

"match" promises that were
proposed by an analysis

Set of Proposed Promise
Formulas (!)

Promise Verification Conditions (V)

Constructs triples from the
merged analysis results and the

set of proposed promise
formulas

8 CHAPTER 2. FOUNDATIONS

1 package EDU.oswego.cs.dl.util.concurrent;

2

3 @Region("protected Variable")

4 @RegionLock("VarLock is lock_ protects Variable")

5 public class SynchronizedVariable extends Object ... {

6 protected final Object lock_;

7

8 @RegionEffects("none")

9 @Starts("nothing")

10 @Borrowed("this")

11 public SynchronizedVariable() {

12 lock_ = this;

13 }

14 }

15 public class SynchronizedBoolean extends SynchronizedVariable ... {

16 @InRegion("Variable") protected boolean value_;

17

18 @SingleThreaded

19 @RegionEffects("none")

20 @Starts("nothing")

21 @Borrowed("this")

22 public SynchronizedBoolean(boolean initialValue) {

23 super();

24 value_ = initialValue;

25 }

26 }

27 <package name="java.lang">

28 <class name="Object">

29 <constructor>

30 <RegionEffects>none</RegionEffects>

31 <Starts>nothing</Starts>

32 <Borrowed>this</Borrowed>

33 </constructor>

34 </class>

35 </package>

Figure 2.5: Elided Java code from the SynchronizedVariable and SynchronizedBoolean

classes after adding the locking, effects, thread effects, and uniqueness promises required to
assure the locking policy of these classes. Also shown are promises about the no-argument
constructor of the java.lang.Object class (the superclass of SynchronizedVariable). These
promises are made as“standoff annotations”using XML structures because Object is part of the
Java standard library and is typically used in binary form. Annotation via XML is equivalent
to direct annotation of code.

Annotated Java
Program

2.5. PROOF CALCULUS FOR PROMISE VERIFICATION 21

Analysis Results
Finding About Prerequisite Description

f1 + r8 q1 super() promises consistent effects
f2 + r8 � lock_ write masked at line 12

f3 + r8 � this read masked at line 12

f4 + r9 q2 super() promises it starts no threads

f5 + r9 � constructor starts no threads

f6 + r10 q3 super() promises not to alias this

f7 − r10 � this aliased into lock_ at line 12

f8 + r4 q4 ∨ (q5 ∧ q6) thread-confined access to value_ at line 23

f9 + r18 q7 super() promises consistent effects
f10 + r18 � value_ write masked at line 23

f11 + r18 � initialValue read masked at line 23

f12 + r19 q8 super() promises it starts no threads

f13 + r19 � constructor starts no threads

f14 + r20 q9 super() promises not to alias this

f15 + r20 � constructor does not alias this

f16 + r29 � constructor has consistent effects
f17 + r30 � constructor starts no threads

f18 + r31 � constructor does not alias this

Proposed Promises
Promise On

q1 @RegionEffects("none") java.lang.Object no-argument constructor

q2 @Starts("nothing") java.lang.Object no-argument constructor

q3 @Unique("return") java.lang.Object no-argument constructor

q4 @Unique("return") SynchronizedBoolean(boolean) at line 21

q5 @RegionEffects("reads All") SynchronizedBoolean(boolean) at line 21

q6 @Starts("nothing") SynchronizedBoolean(boolean) at line 21

q7 @RegionEffects("none") SynchronizedVariable() at line 11

q8 @Starts("nothing") SynchronizedVariable() at line 11

q9 @Unique("return") SynchronizedVariable() at line 11

Matched Promises (the set Φ)

r29 → q1

r30 → q2

r31 → q3

r20 → q4

r18 → q5

r19 → q6

r8 → q7

r9 → q8

r10 → q9

Figure 2.12: Analysis output for the util.concurrent code in Figure 2.4.

2.5. PROOF CALCULUS FOR PROMISE VERIFICATION 29

R1 = {f1, f2, f3, f9, f10, f11, f16}
R2 = {f4, f5, f12, f13, f17}
R3 = R1 ∪R2

R4 = R3 ∪ {f8}

Figure 2.16

V �coe {�} (R1,Φ) {r18}
Figure 2.15

V �coe {�} (R2,Φ) {r19}
V �coe {� ∧ �} (R3,Φ) {r18 ∧ r19} Merge

V �coe {�} (R3,Φ) {r18 ∧ r19} Implied

V �coe {q4 ∨ (q5 ∧ q6)} ({f8},Φ) {r4} Axiom

V �coe {r20 ∨ (r18 ∧ r19)} ({f8},Φ) {r4} Implied

V �coe {r18 ∧ r19} ({f8},Φ) {r4} Implied

V �coe {�} (R4,Φ) {r4} Compose

Figure 2.17: Proof of the sequent V �coe {�} (R4,Φ) {r4} which demonstrates the consistency
of the @RegionLock("VarLock is lock_ protects Variable") promise, r4, on line 4 in Fig-
ure 2.4 with the code. V is defined in Figure 2.13.

The Compose rule

V �coe {φ} (R1,Φ) {η} V �coe {η} (R2,Φ) {ψ}
V �coe {φ} (R1 ∪R2,Φ) {ψ} Compose

allows us to compose triples and work toward a prerequisite assertion of �. This rule used with

the Axiom and Implied rules is enough to prove the consistency of the @Starts("nothing")

promise, r19, on line 19 in Figure 2.4 with the code. This proof, shown in Figure 2.15, demon-

strates that r19 is consistent by first replacing all proposed promises in the prerequisite assertions

then using the Compose rule to derive a prerequisite assertion of �. The structure of this proof

illustrates that @Starts("nothing") promise, r30, is satisfied on the java.lang.Object no-

argument constructor, which is required for @Starts("nothing") promise, r9, to be satisfied on

the SynchronizedVariable no-argument constructor, which is required for @Starts("nothing")

promise, r19, to be satisfied on the SynchronizedBoolean(boolean) constructor.

The proof in Figure 2.16 demonstrates the consistency of the @RegionEffects("none")

promise, r18, on line 18 in Figure 2.4 with the code and is similar in approach to the proof

described above.

To prove the VarLock model is consistent with the code we need to demonstrate the consis-

tency of the @RegionLock promise, r4. This proof is shown in Figure 2.17 and it requires use

of the Merge rule

V �coe {φ} (R1,Φ) {ψ} V �coe {η} (R2,Φ) {θ}
V �coe {φ ∧ η} (R1 ∪R2,Φ) {ψ ∧ θ} Merge

Analyze

Lock Policy Uniqueness Effects Thread Effects

Analyzes the
annotated program
using constituent
"plug-in" analyses

Merged Analysis Results

Proposed Promises

...

Using the generated set of
promise verification conditions,
construct contingent promise

verification proofs

Proofs

2.5. PROOF CALCULUS FOR PROMISE VERIFICATION 21

Analysis Results
Finding About Prerequisite Description

f1 + r8 q1 super() promises consistent effects
f2 + r8 � lock_ write masked at line 12

f3 + r8 � this read masked at line 12

f4 + r9 q2 super() promises it starts no threads

f5 + r9 � constructor starts no threads

f6 + r10 q3 super() promises not to alias this

f7 − r10 � this aliased into lock_ at line 12

f8 + r4 q4 ∨ (q5 ∧ q6) thread-confined access to value_ at line 23

f9 + r18 q7 super() promises consistent effects
f10 + r18 � value_ write masked at line 23

f11 + r18 � initialValue read masked at line 23

f12 + r19 q8 super() promises it starts no threads

f13 + r19 � constructor starts no threads

f14 + r20 q9 super() promises not to alias this

f15 + r20 � constructor does not alias this

f16 + r29 � constructor has consistent effects
f17 + r30 � constructor starts no threads

f18 + r31 � constructor does not alias this

Proposed Promises
Promise On

q1 @RegionEffects("none") java.lang.Object no-argument constructor

q2 @Starts("nothing") java.lang.Object no-argument constructor

q3 @Unique("return") java.lang.Object no-argument constructor

q4 @Unique("return") SynchronizedBoolean(boolean) at line 21

q5 @RegionEffects("reads All") SynchronizedBoolean(boolean) at line 21

q6 @Starts("nothing") SynchronizedBoolean(boolean) at line 21

q7 @RegionEffects("none") SynchronizedVariable() at line 11

q8 @Starts("nothing") SynchronizedVariable() at line 11

q9 @Unique("return") SynchronizedVariable() at line 11

Matched Promises (the set Φ)

r29 → q1

r30 → q2

r31 → q3

r20 → q4

r18 → q5

r19 → q6

r8 → q7

r9 → q8

r10 → q9

Figure 2.12: Analysis output for the util.concurrent code in Figure 2.4.

4.5. PROOF CALCULUS FOR PROMISE VERIFICATION 61

Analysis Results
Finding About Prerequisite Description

f1 + r8 q1 super() promises consistent effects
f2 + r8 � lock_ write masked at line 12

f3 + r8 � this read masked at line 12

f4 + r9 q2 super() promises it starts no threads

f5 + r9 � constructor starts no threads

f6 + r10 q3 super() promises not to alias this

f7 × r10 � this aliased into lock_ at line 12

f8 + r4 q4 ∨ (q5 ∧ q6) thread-confined access to value_ at line 23

f9 + r18 q7 super() promises consistent effects
f10 + r18 � value_ write masked at line 23

f11 + r18 � initialValue read masked at line 23

f12 + r19 q8 super() promises it starts no threads

f13 + r19 � constructor starts no threads

f14 + r20 q9 super() promises not to alias this

f15 + r20 � constructor does not alias this

f16 + r29 � constructor has consistent effects
f17 + r30 � constructor starts no threads

f18 + r31 � constructor does not alias this

Proposed Promises
Promise On

q1 @RegionEffects("none") java.lang.Object no-argument constructor

q2 @Starts("nothing") java.lang.Object no-argument constructor

q3 @Unique("return") java.lang.Object no-argument constructor

q4 @Unique("return") SynchronizedBoolean(boolean) at line 21

q5 @RegionEffects("reads All") SynchronizedBoolean(boolean) at line 21

q6 @Starts("nothing") SynchronizedBoolean(boolean) at line 21

q7 @RegionEffects("none") SynchronizedVariable() at line 11

q8 @Starts("nothing") SynchronizedVariable() at line 11

q9 @Unique("return") SynchronizedVariable() at line 11

Matched Promises (the set Φ)

r29 → q1

r30 → q2

r31 → q3

r20 → q4

r18 → q5

r19 → q6

r8 → q7

r9 → q8

r10 → q9

Figure 4.12: Analysis output for the util.concurrent code in Figure 4.4.

Merge Analysis Results

Figure 2.5: An diagram sketching the steps performed by analysis-based verification to verify the code
in Figure 2.4 from the util.concurrent library. The arrows indicate data flow, the rounded boxes
are processes. The code, tables, formulas, and proofs are the data generated and used (as described
in the next three sections of this chapter). The images of the tables, formulas, and proofs give an
impression of the notation and are not intended to be legible.

2.7. SOUNDNESS 81

Proof. (By contradiction) We use Definition 2.6.4 to define consistency with Ψ. Assume, to

the contrary, that there exists a set T1 of assumed T atoms that is consistent with Ψ and that

there exists a set T2 of assumed T atoms that is consistent with Ψ such that T1 ≠ T2 but that

T1 ∪ T2 is not consistent with Ψ.

If T1∪T2 is not consistent with Ψ then there exists a p ∈ T1∪T2 such that either ψ → p ∈ Ψ
andM(T1∪T2) �pl ψ or ψ → p ∉ Ψ. We know that p is an element of T1 or T2 or both. Because

both T1 and T2 are consistent with Ψ we assume, without loss of generality, that p ∈ T1 and

consider the two cases defined at the start of this paragraph.

(Case ψ → p ∈ Ψ and M(T1∪T2) �pl ψ) In this case because p ∈ T1 and T1 is

consistent with Ψ we know by Definition 2.6.4 that there exists ψ′ → p ∈ Ψ
such that M(T1) �pl ψ′. By Lemma 2.6.1 (Uniqueness of analysis implication

consequents) we know that ψ = ψ′ and, therefore, M(T1) �pl ψ. Because ψ →
p ∈ Ψ, by Lemma 2.6.2 (Analysis implication antecedents are implication-free),

we know that ψ ∈ AOFormula. Further, because M(T1) �pl ψ, T1 ≠ T2, and

ψ ∈ AOFormula, by Lemma 2.6.3 (Monotonicity of implication-free formulas),

we know M(T1∪T2) �pl ψ. However, by the definition of this case M(T1∪T2) �pl ψ
is a contradiction.

(Case ψ → p ∉ Ψ) In this case because p ∈ T1 and T1 is consistent with Ψ we know

by Definition 2.6.4 that there exists an implication in Ψ with p as its consequent.

However, by the definition of this case this existence is a contradiction.

In both cases we reach a contradiction, therefore, the proposition is true.

Note that Theorem 2.6.4 (Existence of analysis semantics), depends upon the prerequisite

assertions reported by program analyses as part of each analysis result to be implication-free.

If implications are allowed then this theorem is not true. For example, consider the (illegal)

set of analysis results R = {(+, r3, q1 → r2), (+, r2,�)} where Φ is empty. By Definition 2.6.3

Ψ = {(q1 → r2) → r3), �→ r2}. Let T1 = {r3} and T2 = {r2}. Notice that, by Definition 2.6.4,

T1 and T2 are consistent with Ψ but T1 ∪T2 is not. Avoiding this situation is the reason why

the prerequisite for each analysis result must be an element of AOFormula.

2.7 Soundness

In this section we prove a soundness theorem that relates the logic for analysis-based verifica-

tion presented in Section 2.5 to the analysis semantics developed in Section 2.6. Theorem 2.7.4

(Soundness) proves the proposition

If V �coe {φ} (R′,Φ) {ψ} is valid thenM(T) �pl φ→ ψ holds

which states that if we can derive a triple where φ is the prerequisite assertion for ψ in

our logic then it must be the case that the formula φ → ψ is ‘true’ or ‘consistent’ in our

analysis semantics (i.e., φ → ψ evaluates to T in the model M(T)). We present proofs for

three supporting lemmas followed by a proof of soundness.

2.7. SOUNDNESS 81

Proof. (By contradiction) We use Definition 2.6.4 to define consistency with Ψ. Assume, to

the contrary, that there exists a set T1 of assumed T atoms that is consistent with Ψ and that

there exists a set T2 of assumed T atoms that is consistent with Ψ such that T1 ≠ T2 but that

T1 ∪ T2 is not consistent with Ψ.

If T1∪T2 is not consistent with Ψ then there exists a p ∈ T1∪T2 such that either ψ → p ∈ Ψ
andM(T1∪T2) �pl ψ or ψ → p ∉ Ψ. We know that p is an element of T1 or T2 or both. Because

both T1 and T2 are consistent with Ψ we assume, without loss of generality, that p ∈ T1 and

consider the two cases defined at the start of this paragraph.

(Case ψ → p ∈ Ψ and M(T1∪T2) �pl ψ) In this case because p ∈ T1 and T1 is

consistent with Ψ we know by Definition 2.6.4 that there exists ψ′ → p ∈ Ψ
such that M(T1) �pl ψ′. By Lemma 2.6.1 (Uniqueness of analysis implication

consequents) we know that ψ = ψ′ and, therefore, M(T1) �pl ψ. Because ψ →
p ∈ Ψ, by Lemma 2.6.2 (Analysis implication antecedents are implication-free),

we know that ψ ∈ AOFormula. Further, because M(T1) �pl ψ, T1 ≠ T2, and

ψ ∈ AOFormula, by Lemma 2.6.3 (Monotonicity of implication-free formulas),

we know M(T1∪T2) �pl ψ. However, by the definition of this case M(T1∪T2) �pl ψ
is a contradiction.

(Case ψ → p ∉ Ψ) In this case because p ∈ T1 and T1 is consistent with Ψ we know

by Definition 2.6.4 that there exists an implication in Ψ with p as its consequent.

However, by the definition of this case this existence is a contradiction.

In both cases we reach a contradiction, therefore, the proposition is true.

Note that Theorem 2.6.4 (Existence of analysis semantics), depends upon the prerequisite

assertions reported by program analyses as part of each analysis result to be implication-free.

If implications are allowed then this theorem is not true. For example, consider the (illegal)

set of analysis results R = {(+, r3, q1 → r2), (+, r2,�)} where Φ is empty. By Definition 2.6.3

Ψ = {(q1 → r2) → r3), �→ r2}. Let T1 = {r3} and T2 = {r2}. Notice that, by Definition 2.6.4,

T1 and T2 are consistent with Ψ but T1 ∪T2 is not. Avoiding this situation is the reason why

the prerequisite for each analysis result must be an element of AOFormula.

2.7 Soundness

In this section we prove a soundness theorem that relates the logic for analysis-based verifica-

tion presented in Section 2.5 to the analysis semantics developed in Section 2.6. Theorem 2.7.4

(Soundness) proves the proposition

If V �coe {φ} (R′,Φ) {ψ} is valid thenM(T) �pl φ→ ψ holds

which states that if we can derive a triple where φ is the prerequisite assertion for ψ in

our logic then it must be the case that the formula φ → ψ is ‘true’ or ‘consistent’ in our

analysis semantics (i.e., φ → ψ evaluates to T in the model M(T)). We present proofs for

three supporting lemmas followed by a proof of soundness.

26

Supporting model expression

• A limitation of analysis-based verification is the number of
annotations required

• 11 annotations were required to verify the lock use policy of
BoundedFIFO, a tiny program

• Why so many annotations?

• The annotations allow the verifying analyses to be modular
(i.e., avoiding a whole program analysis)

• We introduce two approaches to assist the programmer with model
expression

• Proposed promises

• The scoped promise, @Promise

• These approaches can reduce the extent of model expression by
orders of magnitude

• In some cases down to 6.3 annotations per KSLOC (Sutherland)

27

Proposed promises

• How does the verification process “connect” analysis fragments?

• Constituent analyses propose promises rather than look for them

• A specialized program analysis, called promise matching,
“matches” each proposed promise with a real promise in the code

20 CHAPTER 1. INTRODUCTION

Analysis Results for BoundedFIFO

Finding About Prerequisite Description

f4 + r1 q1 ∨ (q2 ∧ q3) thread-confined access to size at line 13

...

f24 + r1 q4 FIFOLock held for access to numElts at line 39

...

f32 + r10 q5 super() promises not to alias this

Proposed Promises

Promise On

q1 @Unique("return") BoundedFIFO(int) constructor

q2 @RegionEffects("none") BoundedFIFO(int) constructor

q3 @Starts("nothing") BoundedFIFO(int) constructor

q4 @RequiresLock("FIFOLock") BoundedFIFO.length()

q5 @Unique("return") java.lang.Object no-argument constructor

75 <package name="java.lang">

76 <class name="Object">

77 <constructor>

78 <Unique>return</Unique>

79 ...

80 </constructor>

81 </class>

82 </package>

Analysis Results for java.lang.Object

Finding About Prerequisite Description

f36 + r78 � constructor does not alias this

...

Figure 1.7: (Top) Elided analysis results for BoundedFIFO reporting an explicit prerequisite assertion

for each“point of consistency” found in the code by the constituent analysis. (Middle) Elided promises

about the no-argument constructor of the java.lang.Object class (the superclass of BoundedFIFO).

The @Unique("return") promise is made as a “standoff annotation” using XML structures because

Object is part of the Java standard library and is typically used in binary form. Annotation via

XML is equivalent to direct annotation of code. This promise, referred to as r78, is the prerequisite

assertion for the analysis result f32. (Bottom) Elided analysis results for java.lang.Object. The

result about the @Unique("return") promise on the no-argument constructor does not require a

prerequisite assertion, the symbol � is used to express this lack of a prerequisite. (As is presented

in the next chapter, the prerequisite assertion is logical formula that constrains the verification of

the promise the result is about, �, which represents the tautology, indicates no constraint.) Line and

result numbering is continued starting after the last line of the Dispatcher code to keep references

unambiguous.

28

Promise matching

• A specialized program analysis

• Results in a set of implications →

• A real promise “implies” a proposed promise

• If the real assertion holds the proposed assertion must hold

• Our proof calculus allows this set to be used to mark proposed
promises as intended

 2 public class BoundedFIFO {

10 @Unique("return")
11 public BoundedFIFO(int size) {

38 @RequiresLock("FIFOLock")
39 public int length() {

75 <package name="java.lang">
76 <class name="Object">
77 <constructor>
78 <Unique>return</Unique>

20 CHAPTER 1. INTRODUCTION

Analysis Results for BoundedFIFO

Finding About Prerequisite Description

f4 + r1 q1 ∨ (q2 ∧ q3) thread-confined access to size at line 13

...

f24 + r1 q4 FIFOLock held for access to numElts at line 39

...

f32 + r10 q5 super() promises not to alias this

Proposed Promises

Promise On

q1 @Unique("return") BoundedFIFO(int)

q2 @RegionEffects("none") BoundedFIFO(int)

q3 @Starts("nothing") BoundedFIFO(int)

q4 @RequiresLock("FIFOLock") BoundedFIFO.length()

q5 @Unique("return") Object()

75 <package name="java.lang">

76 <class name="Object">

77 <constructor>

78 <Unique>return</Unique>

79 ...

80 </constructor>

81 </class>

82 </package>

Analysis Results for java.lang.Object

Finding About Prerequisite Description

f36 + r78 � constructor does not alias this

...

Figure 1.7: (Top) Elided analysis results for BoundedFIFO reporting an explicit prerequisite assertion

for each“point of consistency” found in the code by the constituent analysis. (Middle) Elided promises

about the no-argument constructor of the java.lang.Object class (the superclass of BoundedFIFO).

The @Unique("return") promise is made as a “standoff annotation” using XML structures because

Object is part of the Java standard library and is typically used in binary form. Annotation via

XML is equivalent to direct annotation of code. This promise, referred to as r78, is the prerequisite

assertion for the analysis result f32. (Bottom) Elided analysis results for java.lang.Object. The

result about the @Unique("return") promise on the no-argument constructor does not require a

prerequisite assertion, the symbol � is used to express this lack of a prerequisite. (As is presented

in the next chapter, the prerequisite assertion is logical formula that constrains the verification of

the promise the result is about, �, which represents the tautology, indicates no constraint.) Line and

result numbering is continued starting after the last line of the Dispatcher code to keep references

unambiguous.

20 CHAPTER 1. INTRODUCTION

Analysis Results for BoundedFIFO

Finding About Prerequisite Description

f4 + r1 q1 ∨ (q2 ∧ q3) thread-confined access to size at line 13

...

f24 + r1 q4 FIFOLock held for access to numElts at line 39

...

f32 + r10 q5 super() promises not to alias this

Proposed Promises

Promise On

q1 @Unique("return") BoundedFIFO(int)

q2 @RegionEffects("none") BoundedFIFO(int)

q3 @Starts("nothing") BoundedFIFO(int)

q4 @RequiresLock("FIFOLock") BoundedFIFO.length()

q5 @Unique("return") Object()

Matched Promises (the set Φ)

r10 → q1

r38 → q4

r78 → q5

75 <package name="java.lang">

76 <class name="Object">

77 <constructor>

78 <Unique>return</Unique>

79 ...

80 </constructor>

81 </class>

82 </package>

Analysis Results for java.lang.Object

Finding About Prerequisite Description

f36 + r78 � constructor does not alias this

...

Figure 1.7: (Top) Elided analysis results for BoundedFIFO reporting an explicit prerequisite assertion

for each“point of consistency” found in the code by the constituent analysis. (Middle) Elided promises

about the no-argument constructor of the java.lang.Object class (the superclass of BoundedFIFO).

The @Unique("return") promise is made as a “standoff annotation” using XML structures because

Object is part of the Java standard library and is typically used in binary form. Annotation via

XML is equivalent to direct annotation of code. This promise, referred to as r78, is the prerequisite

assertion for the analysis result f32. (Bottom) Elided analysis results for java.lang.Object. The

result about the @Unique("return") promise on the no-argument constructor does not require a

prerequisite assertion, the symbol � is used to express this lack of a prerequisite. (As is presented

in the next chapter, the prerequisite assertion is logical formula that constrains the verification of

the promise the result is about, �, which represents the tautology, indicates no constraint.) Line and

result numbering is continued starting after the last line of the Dispatcher code to keep references

unambiguous.

29

Promise matching: Why implications?

• A “match” is a semantic match—not a textual match

• Example: The match r18 → q5 (above)

• Promising not to read or write to global program state is a
stronger assertion than promising to only read global state

• If the former holds the latter must hold

66 CHAPTER 2. FOUNDATIONS

public class SynchronizedBoolean extends ... {
 @InRegion("Variable") protected boolean value_;

 @RegionEffects("none")
 @Starts("nothing")
 @Unique("return")
 public SynchronizedBoolean(boolean initialValue) {
 super();
 value_ = initialValue;
 }
}

 ...
 q4 @Unique("return")
 q5 @RegionEffects("reads All")
 ...

Annotated Program Proposed Promises

r20 ! q4

r18 r18 ! q5
r20

Matches

Figure 2.11: An illustration of promise matching for two proposed promises. The proposed promise

q4 exactly matches the real promise r20 in the code (in location and semantics). The real promise r18
constrains the effects of the same block of code more than the proposed promise q5, therefore, r18 is

a match for q5.

specialized constituent analysis in the sense that it relies on programming language and

assertion semantics to complete the matching. It works by examining the location of each

proposed promise in the code and checking if an equivalent or stronger real promise exists

at that location. That is, a given real promise is only a match if its consistency guarantees

the consistency of the proposed promise. The output of promise matching is a set of promise

matching formulas, which we refer to as Φ. Promise matching ensures that if r1 → q ∈ Φ and

r2 → q ∈ Φ then r1 = r2, i.e., a unique result is reported for each consequent.

For the example util.concurrent code in Figure 2.4 the input to promise matching is

C = {SynchronizedVariable, SynchronizedBoolean, Object}
Preal = {r4, r8, r9, r10, r18, r19, r20, r29, r30, r31}
Pprop = {q1, q2, q3, . . . , q9}

R = {f1, f2, f3, . . . , f18}
and the resulting set of promise matching formulas, Φ, is shown in Figure 2.10. To understand

this process better we now examine how two of the promise matching formulas in Figure 2.10

were included in Φ. These two matches are illustrated in Figure 2.11.

Consider q4 which proposes a @Unique("return") promise for the constructor, Synchro-

nizedBoolean(boolean), at line 21. Examination of this constructor finds that an equivalent

real promise, r20, exists. Hence, promise matching adds r20 → q4 to Φ.

As a second example, consider q5 which proposes a @RegionEffects("reads All") for

the constructor, SynchronizedBoolean(boolean), at line 21. Examination of this construc-

What has this got to do with supporting model expression?
30

Tool-assisted completion of partial models

• Promise matching has a practical aspect with respect to supporting
model expression

• The remaining proposed promises, after promise matching, can
be proposed by the tool to the developer -- e.g., using a specially
flagged annotation (“is this your intent?”)

• The computation that produces verification results computes a
“weakest prerequisite assertion” using remaining proposed
promises

• Computed in a manner analogous to weakest precondition in the
classic verification literature -- but with very different semantics

• Example: BoundedFIFO (with code repaired) from one promise

31

Using proposed promises (1)

The programmer enters the @RegionLock promise into BoundedFIFO

JSure can’t verify the promise, but it proposes “missing” promises

32

Using proposed promises (2)

Using the context menu the programmer directs the tool to add the promises

With the 10 additional promises, JSure can verify the model

33

Tool-assisted completion of partial models

• The approach is abductive—working from a desired consequent to a
possible antecedent

• Our example worked because we supplied the lock use policy — the
remaining annotations were proposed by the tool (typical)

• Everything is tool-verified, so we remain sound

• Composition (key to scale-up) in this case can assist the tool user with
model expression

• Most of our underlying analyses have low “perplexity,” which
facilitates practical abduction

34

@Promise: Avoiding repetitive annotation

• We introduce @Promise
to help avoid repetitive
annotation

• One intent—one annotation

• Uses an aspect-like syntax

• Semantics: all (even in future)

• Constituent analyses see
virtual promises

There is another...

@RegionLock("FIFOLock is this protects Instance")
@Promises({
 @Promise("@Unique(return) for new(**)"),
 @Promise("@RequiresLock(FIFOLock) for *(**)")
})
public class BoundedFIFO {

 @Unique
 @Aggregate
 LoggingEvent[] buf;

 ...
}

35

Thread coloring [Sutherland]

• Allows developers to specify and verify thread usage policies

• Non-lock concurrency (thread-confinement)

• Benefits

• @Promise is effective for documenting thread usage policies

• “By using scoped promises, we replace over 1,700 color
constraint annotations with six scoped promises in each of the
nine packages”

1.3. OUR APPROACH: ANALYSIS-BASED VERIFICATION 29

@Promise("@InLayer(MODEL)")

package edu.afit.smallworld.model;

Figure 1.14: The use of an @Promise annotation in a package-info.java file to place an @InLayer

promise on every type declared within the edu.afit.smallworld.model package. The @InLayer

promise, introduced in Chapter 5, is used to map types into static layer—part of a structural model

of the code that can be verified by JSure.

@Promises({

@Promise("@Color(DBExaminer | DBChanger) for get*(**) | is*(**) | same*(**)"),

@Promise("@Color(DBExaminer | DBChanger) for compare(**) | connectsTo(**)"),

@Promise("@Color(DBExaminer | DBChanger) for contains*(**) | describe()"),

@Promise("@Color(DBExaminer | DBChanger) for find*(**) | num*(**)"),

@Promise("@Color(DBChanger) for set*(**) | make*(**) | modify*(**)"),

@Promise("@Color(DBChanger) for clear*() | new(**) | add*(**)")

})

package com.sun.electric.database.network;

Figure 1.15: A package-info.java file within the Electric open-source VLSI-design tool annotated

with six @Promise annotations by Sutherland to place @Color promises as part of a field trial of the

JSure tool and his thread coloring analysis [104].

example where @Promise is used to place a payload promise of @InLayer("MODEL") on all

types declared within the edu.afit.smallworld.model package. The for clause, used in

the examples in Figure 1.13, is omitted from the @Promise syntax in this case.

Sutherland used @Promise to reduce the number of programmer-expressed annotations

in a field trial on the 140 KSLOC Electric open-source VLSI-design tool. As he reports in

[102]:

“With [@Promise], we were able to avoid writing nearly two thousand annotations,

and instead write only fifty-four—six scoped promises in each of nine packages.”

An example of the annotations made to one of the nine Electric packages is shown in Fig-

ure 1.15. The details of the pattern matching syntax used in this example are presented in

Chapter 3.

1.3.3 Supporting contingencies

Our approach allows three types of unverified contingencies to exist in the chain of evidence

about a promise:

1. Using the @Vouch promise, a programmer can vouch for an overly conservative analysis

result—in effect, changing it from inconsistent to consistent.

Takes advantage of stylized
naming schemes

Sutherland and Scherlis, Composable Thread Coloring, in Proc. PPOPP, 2010, pp.233-244.

36

Supporting contingencies

• Our approach supports three kinds of unverified contingencies:

• @Vouch – Vouches for presumptive false positives

• @Assume – Assume truth of unverified assertion
(e.g., about a library component)

• Turning off a constituent analysis – promises that need to be
verified by that analysis will show as correct with contingency

• The “red dot”

• The impact of all contingencies are visibly indicated with a trail
of “red dot”s in the user interface

• A programmer must be willing to prick a finger and vouch for the
unverified contingency with a small drop of virtual blood

37

@Vouch – Hadoop MapReduce1.3. OUR APPROACH: ANALYSIS-BASED VERIFICATION 31

@Region("StatusState")
@RegionLock("StatusLock is this protects StatusState")
public class JobInProgress {
@InRegion("StatusState")
JobStatus status;
...

}

public class CapacityTestUtils {
@Vouch("This code is used only for testing")
static class FakeJobInProgress extends JobInProgress { ... }
...

}

Figure 1.16: An example of using the @Vouch promise to indicate that test code is intentionally

unverifiable. (Top) Elided Java code for the JobInProgress class from Hadoop’s MapReduce project

including a locking model, StatusLock, that declares that a lock on the receiver (i.e., this) is used

to protect reads and writes to the field status. The MapReduce project contains 13 subclasses of

JobInProgress that access this field. (Middle) Elided Java code for the CapacityTestUtils class

that declares, as a nested class, a subclass of JobInProgress called FakeJobInProgress. The @Vouch
annotation states this class is unverifiable because it is test code. (Bottom) JSure screenshot of

the results for the verification of the @RegionLock promise on JobInProgress. The icon for any

inconsistent analysis results that are within the scope of the @Vouch are changed from a red “×” to a

grey“+”with the @Vouch as a prerequisite assertion. The @Vouch promise in the results is identified by

a T decorator to the upper-right of the @ icon, indicating that it is trusted. Because the programmer’s

vouch is not verified by analysis, a red dot is introduced above any verification result that depends

upon it. The red dot highlights a contingency to the tool user.

Vouching for test
code as an exception
to a lock use policy

This vouch only applies to results within the
declaration of FakeJobInProgress

38

Example: A bug in Oswego util.concurrent

39

Evaluation activity: Field trials

• Conducted nine field trials of the JSure tool with disinterested
practitioners

• Field trials were conducted in the client’s facilities

• On-site at client’s location (code access limited)

• Experienced client engineers worked side-by-side work with JSure

Chris Douglas (of Yahoo!) and
Nathan Boy (of SureLogic) working

inside Yahoo Building E

40

A small sample of code examined148 CHAPTER 4. EVALUATION

Duration Code Size
Date (days) Organization Software Examined (KSLOC)

Jul 2004 3 Company-A Commercial J2EE Server-A 350
Dec 2004 3 NASA/JPL Distributed Object Manager 42

MER Rover Sequence Editor 20
File Exchange Interface 12
Space InfeRed Telemetry Facility 18

Feb 2005 3 Sun Electric – VLSI Design Tool 140
Oct 2005 3 Company-B Commercial J2EE Server-B 150
Jul 2006 3 Lockheed Martin Sensor/Tracking (CSATS) 50

Weapons Control Engagement 30
Dec 2006 1 Lockheed Martin Equipment Web Portal 75
Mar 2007 3 NASA/JPL Testbed 65

Service Provisioning (SPS) 40
Mission Data Processing (MPCS) 100
Next-Generation DSN Array 50

Oct 2007 3 NASA/JPL Maestro 17
Command GUI 139
Accountability Services Core 48

Oct 2009 3 Yahoo! Hadoop HDFS 107
Hadoop MapReduce 281
Hadoop ZooKeeper 62

Figure 4.1: Date, duration, organization, software examined, and code size of the Java software
systems examined during the 9 field trials of the JSure tool.

who participated in all of the field trials excepted the one at Sun in February of 2005, other

members of the research team and, in parentheses, the number of field trials in which they

participated are: Kevin Bierhoff (1), Nathan Boy (1), Edwin Chan (8), Aaron Greenhouse

(2), Larry Maccherone (1), Elissa Newman (3), Dean Sutherland (5).

The client team consisted of engineers from the organization that hosted the field trial.

Figure 4.3 reports the size of the client team and the size of the research team for each of the

nine field trials. We only count programmers/engineers when reporting the size of the client

team. Any members of the hosting organization’s management or administrative staff (e.g.,

who may have attended the outbrief or issued security badges) are excluded from our count.

The client team participants were, in all cases, the developers and maintainers of the sys-

tems that we examined. We were not working with researchers within the client organization

that had collected code from one or more engineering groups for examination during the visit.

We advocated to work directly with engineers “in the trenches” when setting up each field

trial to have the best chance of getting honest feedback about our approach.

The programmers and software engineers who participated in the field trials were all ac-

Two broad categories: (1) server/infrastructure and
(2) naval and aerospace mission support

41

Evaluation of approach

1. Scalability with respect to code size

• Tool scales linearly, 64-bit JVM, uniqueness (turned-off/red-dot)

2. Effectiveness with respect to defects found and perceived value

• Identified 79 race conditions in 1.6 million lines of Java code

• Developed 376 models of programmer intent about lock use

• 1,603 annotations added to 1.6 million lines of Java code

3. Compatibility with the incremental reward principle
• “We found a number of significant issues with just a few hours of work.

We really like the iterative approach. We really like the start-with-
nothing approach (We hate tools that spew thousands of problems
that are not actionable).”

4. Support for adoption late in the software lifecycle

• Most systems examined were in operations and maintenance

• Some very mature (JavaEE Server-B released for 3 years)

• Code had passed acceptance evaluation for deployment

42

Perception of client participants

• “It would have been difficult if not impossible to find these issues
without [JSure].”

• “The instances uncovered in this analysis were in very mature
operational code.”

• “Team developed 63 lock models and [JSure] identified logic and
programming errors in the Common Sensor and Tracking (CSAT)
servers and Weapons Control Engagement segments that extensive
review and testing did not discover.”

• “To me the most valuable thing is the basic fact that you’ve given us a
methodology to document the concurrency related design intent. I’m
actually considering implementing a policy that you can’t add a
synchronize to the code without documenting [in JSure] what region it
applies to.”

• “[JSure] was reported by all participants as helping them to understand
and document the thread interactions they had already designed and
implemented. This was an unanticipated, and indirect, benefit from the
study.”

• To a manager, “one mistake and the phone starts to ring.”

43

JSure Modeling Language

• Released under Apache open source license
• http://surelogic.com/promises/index.html

• http://promises.sourceforge.net/

• Primarily for use on Apache Hadoop

• Used by the Timing Framework

• Animation in Swing

• Haase - Filthy Rich Clients

• Goetz, et al. (JCIP) annotations are
supported by the tool

• e.g., @GuardedBy
44

Java Secure Coding standards

45

Summary

• Vision: Create focused analysis-based verification for software
quality attributes1 as a scalable2 and adoptable3 approach to
verifying4 consistency of code with its design intent5

1. Quality attributes: E.g., safe concurrency with locks, data
confinement to thread roles, static layer structure, many others

2. Scalable: Adapt constituent analyses to enable composition

• Keys: chosen quality attributes, drop-sea (composition), scoped
promises, contingencies

3. Adoptable: Before-lunch test (incremental reward principle)

4. Verification: No false negatives from analysis targeted to an
attribute and a model

5. Design intent: Fragmentary models/specifications focused on
quality attributes

Soundness at scale that ordinary programmers
can use on non-trivial program properties

46

