Android Platform Modeling and
Android App Verification
in the ACL2 Theorem Prover

HCSS 2016
Eric Smith and Alessandro Coglio

Kestrel Institute

Kestrel Institute

Contributions

* Atheorem-proving framework for formal proofs
about Android applications.

* |Includes an evolving, formal model of (part of)
the Android platform.

e Case Study: Calculator app produced by a Red Team.

Proving Functional Correctness of
Android Apps.

Not just exfiltration or permission problems.
Proves correct behavior
Find bugs

Finds “functional malware”

— wrong answer
— stop working at critical moment

— |lead a platoon off-course
Few tools can do this
Better than manual inspection

Benefits

* High assurance app vetting

* For incorrect/malicious apps:
— Proof fails.
— Failure often indicates bug / malware

* For correct/benign apps:
— Proof gives high assurance of correctness

— Tells us when we're done: All behaviors rigorously
checked

Example Spec for
Calculator App

Formalized as a state machine.

clear op

1/

N

digit
—>
vallpre vall
INIT =———> [prev_val] |€———— [vall]
clear

op digit val2
—> val2pre > vall —
€— [vall] op
op op [val2] | digit

digit / TT

clear

input ::= digit | op | = | clear
digit::=0]1]12|3|4|5|6|7]8]9
opu=+|-|*|/

clear

[...] is the display

Our Approach

Use a theorem prover (ACL2)

Use a formal model of JVM + Android

— Deep embedding of Java Virtual Machine
* Intercept JVM bytecode before translation to Dalvik

— Model of Android runtime
Formulate correctness (state machine or predicate)
— Whatever ACL2 can express

Prove correctness

— Common approach:

* formulate invariant (can refer to history)
* prove each event preserves invariant

Proofs About Machine Models

* Model is a formal, executable simulator.

e Reason about the model as it executes the code.
— Proof by symbolic execution.

— Use ACL2 rewriter to repeatedly step and simplify
(standard technique)

— Conditionals lead to case splits
— (We have techniques to deal with loops.)

Formal JVM Model

~15K lines
Covers most Java bytecode instructions

JVM state contains: heap, call stack (per thread), static area,
loaded classes, monitor table, interned string table, ...

Models instructions by their effects on the JVM state
Example (IADD instruction):

(defun execute-IADD (th s)
(modify th s
tpc (+ 1 (pc (top-frame th s)))
:stack (push (bvplus 32 (top (pop (stack (top-frame th s))))
(top (stack (top-frame th s))))
(pop (pop (stack (top-frame th s)))))))

Many details: exceptions, class initialization, string interning

Formal Android Model

 ~5Klines

* Models the state of a running Android app:
— JVM state (persistent data in heap and static area)
— Activity stack
— Set of currently-allowed events (e.g., button clicks)
— Manifest (from XML)
— Layouts (from XML)
— Event currently being handled

— Various mappings
* View object (e.g., button) -> event listener
* View name -> resource ID (hex numbers)
* resource ID -> address of View object

— API call history (ghost variable)
— Event history (ghost variable)

Formal Android Model (cont.) _

Event-driven:
— Lifecycle: (:start), (:resume), (:pause),
— GUI: (:click “myButton”)

Event dispatch:
— Check if currently allowed (listener registered, no stop before start, etc.)
— Look up relevant object (e.g., button or activity)

— Set the current event
— Dispatch to handler: onClick (), onResume(), ...

* Execute handler code

* Use models for super . XXX() API calls

 Code’s effects get recorded in the heap and static area
— Record event and API calls made

Android APl Model

Incomplete but growing (driven by the apps we're verifying).

Try to use the code (if available):

— java.lang.Enum.equals()

— android.app.Activity.setTitle()
Sometimes handle specially (fundamental to our model):
— setOnClickListener ()

— setContentView()

— findViewbyId()

— onStart(), onResume(),

Sometimes just record and skip

— android.telephony.SmsManager.sendTextMessage ()
— Jjava.lang.Object.registerNatives|()

Common Proof Methodology

Formulate Invariant:

— Ex: App matches abstract state machine

— Ex: API calls made so far

— Structural invariants: active event listeners, Enum classes
— App-specific invariants (e.g., counter never negative)

Show it holds initially
Prove it is preserved (by each allowed event)

— start with an arbitrary state that satisfies the invariant
— show that running the event handler preserves the invariant

By induction, show that the invariant is preserved for all
event sequences.

Automation

Not fully automatic ...

... but uses ACL2’s highly-automated prover
Big proofs, lots of cases

User input for each calculator button is 1 line:

(def-event-proof (:click "btnPlus") CalcBSimplified6-invariant)

Most work is in formulating the invariant
— attempt proof and strengthen invariant as needed

We see lots of boilerplate invariants to automate!

Case Study: Malicious Calculator App

Based on an app from a Red Team

When number of chained operations is 3, display
88888888 as the “answer”

This is functional malware

Attempted proof fails:

— Failed proof shows that the case of interest is when
numOQOps = 3

— Prover is trying to show that 88888888 is the correct
running result

— Proof failure reveals the malware!

Case Study: Benign Calculator App

Found 2 bugs in “benign” app:

1. Integer overflow in numOps

— of theoretical interest only

— after 2731 chained operations, numOps overflows and
becomes negative

— display no longer updated until it becomes positive again

2. Missing minus sign in display
— Ex: Start the calculator (shows “0”) and enter “=123 4 +”
Display shows “1234” instead of “-1234”.

— Corner case eluded manual inspection.

Proven Calculator

Fixed all of these issues

Proved that our calculator app matches the
state machine.

Guarantees that the calculator always displays
the correct numeric result

— no matter what buttons are pressed

We also proved that the calculator only makes
allowed API calls (listed in the specification)

Lessons Learned
To model Android you have to think like Android

— Hmmm... The platform must map resource IDs to addresses of View objects...

Failed proofs reveal bugs or suggest invariants
— Case that triggers the bug
— Case that should be excluded by the invariant

Trick: When conclusion rewrites to false, introduce an
uninterpreted function

— Trying to prove X=constantl, but X actually equals constant2

— Instead, try to prove X=stub()

— Prover will fail to prove constant2=stub()

APl modeling is hard
— The Android API is huge! All the APAC teams had this issue
— Use the code when you can
— If not (e.g., native methods, fundamental Android methods), write a manual model
— Do it in a demand-driven fashion

Future Work

* Improve JVM model
— floating point, Unicode, java.lang.Class
— run the code for more APl methods

* Improve Android model
— more types of events
— more APl models
— track arguments to API calls (URLs visited, phone numbers)
— Add support for multi-threading, background processes
— Extend to multi-app system (collusion, etc.)
* Will need to model Intents

 Handle loops in event handlers
— lift loops into recursive functions, or
— use cutpoint proofs for loop invariants

Lots of Related Work
(see the VSTTE15S paper)

 To our knowledge, our formal Android model and app
proofs are the most detailed to date.

* Things that distinguish our approach:
— Emphasis on Android (not general program verification)

— Detailed model (not a security/permission abstraction, not a
type system)

— User-level view (vs. checking JML method contracts)
— Mechanized (not pencil-and-paper)
— Embedded in a theorem prover (rich logic)
* Most similar:
— Payet and Spoto: Dalvik model + some APls, app proofs soon

— SymDroid (Jeon, Micinski, Foster): symbolic executor + SMT
solver

Conclusion

* Formal model of Android (and JVM) in ACL2
* Formal proofs about Android apps
* Our approach can

— prove functional correctness of apps
— find bugs and functional malware

Paper: Android Platform Modeling and Android App Verification in the ACL2
Theorem Prover. Eric Smith, and Alessandro Coglio. VSTTE 2015 (Springer)

[This material is based on research sponsored by DARPA under agreement number
FA8750-12-X-0110. The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright notation thereon.]

Questions?

