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Surgical Robotics (Cyber-Physical Systems)
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da Vinci Surgical Robot

Figures courtesy of Intuitive Surgical, Inc.



da Vinci research opportunities

Augmented Reality
* Preoperative images
 Intraoperative data

Mechanical Assistance
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Retinal Microsurgery System
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Surgical Assistant Workstation (SAW)

SAW application
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SAW Requirements

e Support robot control and real-time image processing

e Concurrent execution within a process (multi-
threading) and between processes

 Plug & play of devices
« Safety for clinical testing
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SAW Design

 Component-based software architecture
— Within process and between processes
— Uses cisst C++ libraries
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Medical Device Safety

 Medical device safety: IEC 60601
 Medical device SW life cycle: IEC 62304

 Risk management: ISO 14971

— Failure Modes Effects and Criticality Analysis
(FMECA), IEC 60812

Focus on process, traceability, and testing



SAW Testing

Automated unit testing framework (uses CDash)
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What about lock-free mechanisms for data exchange
between concurrent threads?



Formal Methods to the Rescuel!

 Use FM to validate a small subset of SAW
(data exchange primitives)
— Most difficult to validate by testing
— Incremental introduction of FM
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Goal

Model Driven Design: code generation from verified models

» (At least for a critical subset of code)

Cyber-Physical System
(CPS)

Verified CPS
Interface Code

CPS Interface Code
00 global Vector [N] [H], IndexReader, IndexWriter, Ticks[H];

12 int Get(int data[N]) {

01 void Advance(int data[N]) { 13 local rd, curTicl

02 local old, i, tmp, wr;

L . 14 curTic2, i;
g: :‘1; ;153‘1‘:2:‘::‘3 15 rd = IndexReader;
g 16 curTicl = Ticks[rd];

05 Vector[i] [o1d] = data[i];
06 wr = (old + 1) mod H;

07  IndexWriter = wr;

08 tmp = Ticks[old] + 1;

09  Ticks[wr] = tmp;

17 for (i=l
18 datali]
19 curTic2 = Ticks[rd];

1€H;i44)

21 return 1;
:(l’ Indexfeader = old; 22 else return 0;
23 }

Vector[i] [rd];

20 if (curTiel == curTic2)
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Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: State Vector Storage/Access

» Consider a system that has

“

> A single “writer” thread

» A single storage location for the state vector, with a version 'v'
to distinguish between updates

» Many “reader” threads

=

» Slow readers’ data will be corrupted by a fast writer

» Readers cannot tell whether the vector has been
updated/corrupted during the read



Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Circular Buffer

» SAW maintains a
circular buffer of slots

&
» Each slot contains @

storage for the state @
vector and a version
number =]

» Read and write

indices indicate most @

recent slot completely &
updated, and slot @

currently being
updated




Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Starting State




Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Advance Write Index
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Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Update Version
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Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Advance Read Index

&2 5 Iy

S

[T
A

9
@Qé

[m]



Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Write State Vector
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Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Complete Write
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Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Implementation: Write Cycle

» Display one buffer slot as it changes state

» Time progresses from left to right

One cycle

Active-write portion of cycle



Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Implementation: Read Strategy

» Check version before and after read to ensure no corruption of
data

> Reasoning: Writer updates version before writing, so any
reader will notice different versions if the writer changed the
data during the read




Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Implementation: Detecting A Corrupted Read

» This interleaving illustrates the detection of a corrupted read
by observing a change in version numbers




Certifying the Concurrent State Table Implementation in a Surgical Robotic System

FM Approach: HLRG Program Logic

v

HLRG predicates apply to traces, or sequences of system
states representing the progression of the system over time
» Temporal operators allow expression of statements connecting
state in the present to states in the past

v

Rely/guarantee allows reasoning about concurrent threads

v

Separation logic allows local reasoning

v

Yale colleagues developed sound proof rules that worked in
the presence of these traces and these operators!?

IX. Feng. Local rely-guarantee reasoning, In Proc. 36th ACM Symp. on
Principles of Prog. Lang., Jan. 2009

2M. Fu, Y. Li, X. Feng, Z. Shao, and Y. Zhang. Reasoning about optimistic
concurrency using a program logic for history. Yale Technical Report



Certifying the Concurrent State Table Implementation in a Surgical Robotic System

FM Approach: Operators in HLRG

» Some operators we might encounter:

» P A Q is additive conjunction, where all of the context is used
to satisfy P and @

» P x @ multiplicative conjunction, where part of the context is
used to satisfy P and another disjoint part satisfies @

» P » @ means at some point in the past, P was true, and at
some later time, @ became true

» P> @ means at some point in the past, P was true, and
thereafer, Q held

» & P means at some point in the past or in the present, P
happened

» HP means that P holds always



Certifying the Concurrent State Table Implementation in a Surgical Robotic System

FM Approach: Describing the Domain of Shared State
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Certifying the Concurrent State Table Implementation in a Surgical Robotic System

FM Approach: Atomic steps taken

>
UpdWrite & 1d « ((UpdData > Id) A 3X, X’ .writeindex — Xx
writeindex —» X’ A X/ = (X + 1)modH)
>
UpdVer % 1d x ((UpdWrite > Id) A 3X, X', V, V' writeindex s X*
Ticks+X’ — V’/ x (vriteindex — X # Ticks+X — V’/+1x
Ticks+ X' — V/) A X = (X' + 1)modH)
>
UpdRead %' Id « ((UpdVer > Id) A 3X, Y uriteindex — Y
readindex — X # writeindex — Y) A Y = (X 4 1)modH)
>

UpdData & ((UpdData v UpdRead) &> Id) AV ¢p, . y—1) 3X-(Vector(X)(j)*
writeindex — X x Vector(X)(j) * writeindex — X) x Id



Certifying the Concurrent State Table Implementation in a Surgical Robotic System

FM Approach: Program Description

» We have transformed the program into a description of the

possible atomic steps it may take that affect computer state
| 2

G % (1d v UpdData v UpdWrite V UpdVer v UpdRead) A (I x 1)
R % 1da(xr)

M & BRrve)



Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Verification: First Attempt At Read Data Integrity

» Now state the theorem we seek to prove, and show that our
machine implies that theorem

» Prove key lemma:

A B

Ticks—+h ~» X » Vector(h) ~» D A
Vector(h) ~» D' x Ticks+h ~ X = (D = D')
_— —-——

C D

M=

» This is unprovable, therefore there is a flaw in our design



Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Verification: Example of Read Strategy Problem

> There is a brief span of time where the data becomes
inconsistent without a change in the version number

» An example interleaving that illustrates the problem with our
read strategy

> The reader cannot detect corruption in the read




Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Verification: Improved Read Strategy

» Check the position of the write index in between the first
version check and the actual reading of data

» If the write index is pointing to the current slot (i.e. we are in
the active write portion of the cycle, then assume that our
data is corrupted

» If the version number has changed during the read, also
assume the data is corrupted

A N A




Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Verification: Data Read Integrity Theorem

» Able to successfully complete proof of data read integrity
> Improved key lemma:

>
A B C
M Ticks+h ~» X b writeindex ~» h’ » Vector(h) ~ D A
Vector(h) ~» D’ xTicks+h ~» X A(h# h') = (D = D)
D E F

» When a read completes, the value that is returned accurately
reflects what was stored in memory for that state vector
element during the read; and that value was stable during the
read, i.e. no writer was altering it or may have altered it
during that time.



Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Conclusions

» Towards practical application of formal methods in the design
of medical systems
» Moving in the direction of incrementally introducing FM into
development process, using the SAW as a test case
» Certify properties for critical pieces of reusable framework in
which testing is inadequate
» Immediate benefit to the surgical assistant workstation
» Found and fixed a design flaw in the SAW software
» Guaranteed that there are no more bugs in the state-table
component that could unexpectedly impact the data integrity

of the state vector
» Enumerated specific axioms on which this guarantee rests





