
Applying Formal Methods to Prove
Correctness of Surgical Robot Software

Peter Kazanzides
Computer Science

Johns Hopkins Univ.

Yanni Kouskoulas
Applied Physics Lab
Johns Hopkins Univ.

Zhong Shao
Computer Science

Yale Univ.

HCSS, Annapolis MD, May 4, 2011

Surgical Robotics (Cyber-Physical Systems)

da Vinci Surgical Robot

Figures courtesy of Intuitive Surgical, Inc.

da Vinci research opportunities
Augmented Reality

• Preoperative images

• Intraoperative data

Mechanical Assistance

• Virtual fixtures

• Motion primitives

20-25 gauge tools & sensors (proximity, force, ischemia, OCT)

Stereo video
Surgical

Workstation

• Preoperative images
• Other patient data
• Procedure plans

Robot control
& sensing

OCT &
Spectroscopy

multi-spectral
light source

Steady hand
microsurgical
robots

Hand-held
active tremor
reduction
(MICRON)

Retinal Microsurgery System

Credit: Russell TaylorNIH EB 007969

Surgical Assistant Workstation (SAW)

Joint development with Intuitive Surgical, Inc.

NSF EEC 9731748, EEC 0646678, MRI 0722943

SAW Requirements

• Support robot control and real-time image processing
• Concurrent execution within a process (multi-

threading) and between processes
• Plug & play of devices
• Safety for clinical testing

Supervisory/Trajectory
Control (~100 Hz)

Application
(non-real-time)

H
ardw

are

Read Sensors

Compute Joint
Goals

Compute Goal
on Trajectory

Interpolate
Setpoint

Compute
Control

Read Sensors

Servo Control
(~1000 Hz)

Application

API

Supervisory/Trajectory
Control (~100 Hz)

Application
(non-real-time)

H
ardw

are

Read Sensors

Compute Joint
Goals

Compute Goal
on Trajectory

Read Sensors

Compute Joint
Goals

Compute Goal
on Trajectory

Interpolate
Setpoint

Compute
Control

Read Sensors

Servo Control
(~1000 Hz)

Application

API

Hierarchical multi-rate robot control Real-time video stream

SAW Design

• Component-based software architecture
– Within process and between processes
– Uses cisst C++ libraries

ICE for data exchange between
components in different processes

Efficient, lock-free data exchange
between components in same process

• State table (single writer,
multiple readers)

• Mailboxes (single reader/writer
FIFO)

Medical Device Safety

• Medical device safety: IEC 60601
• Medical device SW life cycle: IEC 62304
• Risk management: ISO 14971

– Failure Modes Effects and Criticality Analysis
(FMECA), IEC 60812

Focus on process, traceability, and testing

SAW Testing
Automated unit testing framework (uses CDash)

What about lock-free mechanisms for data exchange
between concurrent threads?

Formal Methods to the Rescue!

• Use FM to validate a small subset of SAW
(data exchange primitives)
– Most difficult to validate by testing
– Incremental introduction of FM

whiteboard

Goal

Model Driven Design: code generation from verified models

• (At least for a critical subset of code)

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: State Vector Storage/Access

I Consider a system that has
I A single “writer” thread
I A single storage location for the state vector, with a version ’v’

to distinguish between updates
I Many “reader” threads

V

I Slow readers’ data will be corrupted by a fast writer

I Readers cannot tell whether the vector has been
updated/corrupted during the read

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Circular Buffer

I SAW maintains a
circular buffer of slots

I Each slot contains
storage for the state
vector and a version
number

I Read and write
indices indicate most
recent slot completely
updated, and slot
currently being
updated

1
7

1
3

1
4

1
6

12

18

1
5 7

11

19

9

2
1

6
8

20

10

R
e
a
d
 H
e
a
d

W
rite
 H
ea
d

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Starting State

1
7

1
3

1
4

1
6

12

18

1
5 7

11

19

9

2
1

2
2

8

20

10

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Advance Write Index

1
7

1
3

1
4

1
6

12

18

1
5 7

11

19

9

2
1

2
2

8

20

10

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Update Version

1
7

1
3

1
4

1
6

12

18

1
5

2
3

11

19

9

2
1

2
2

8

20

10

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Advance Read Index

1
7

1
3

1
4

1
6

12

18

1
5

2
3

11

19

9

2
1

2
2

8

20

10

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Write State Vector

1
7

1
3

1
4

1
6

12

18

1
5

2
3

11

19

9

2
1

2
2

8

20

10

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Complete Write

1
7

1
3

1
4

1
6

12

18

1
5

2
3

11

19

9

2
1

2
2

8

20

10

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Implementation: Write Cycle

I Display one buffer slot as it changes state

I Time progresses from left to right

V V W W W W W W X XW W W

One cycle

Active-write portion of cycle

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Implementation: Read Strategy

I Check version before and after read to ensure no corruption of
data

I Reasoning: Writer updates version before writing, so any
reader will notice different versions if the writer changed the
data during the read

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Implementation: Detecting A Corrupted Read

I This interleaving illustrates the detection of a corrupted read
by observing a change in version numbers

V V W W WV WW

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

FM Approach: HLRG Program Logic

I HLRG predicates apply to traces, or sequences of system
states representing the progression of the system over time

I Temporal operators allow expression of statements connecting
state in the present to states in the past

I Rely/guarantee allows reasoning about concurrent threads

I Separation logic allows local reasoning

I Yale colleagues developed sound proof rules that worked in
the presence of these traces and these operators12

1X. Feng. Local rely-guarantee reasoning, In Proc. 36th ACM Symp. on
Principles of Prog. Lang., Jan. 2009

2M. Fu, Y. Li, X. Feng, Z. Shao, and Y. Zhang. Reasoning about optimistic
concurrency using a program logic for history. Yale Technical Report

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

FM Approach: Operators in HLRG

I Some operators we might encounter:
I P ∧ Q is additive conjunction, where all of the context is used

to satisfy P and Q
I P ∗ Q multiplicative conjunction, where part of the context is

used to satisfy P and another disjoint part satisfies Q
I P I Q means at some point in the past, P was true, and at

some later time, Q became true
I P B Q means at some point in the past, P was true, and

thereafer, Q held
I ♦− P means at some point in the past or in the present, P

happened
I �P means that P holds always

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

FM Approach: Describing the Domain of Shared State

I

TArray
def
= ~i∈[0,...,H−1]Ticks+i 7→

Vector(i)(j)
def
= Vec+i × N + j 7→

Vector
def
= ~j∈[0,...,N−1](~i∈[0,...,H−1]Vector(i)(j))

I
def
= ∃X .Y .TArray ∗ Vector ∗ readindex 7→ X∗

writeindex 7→ Y

I

Vector(i) 7→ D
def
= ~j∈[0,...,N−1]Vec+i × N + j 7→ D(i , j)

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

FM Approach: Atomic steps taken
I

UpdWrite
def
= Id ∗ ((UpdData B Id) ∧ ∃X ,X ′.writeindex 7→ Xn

writeindex 7→ X ′ ∧ X ′ = (X + 1)modH)

I

UpdVer
def
= Id ∗ ((UpdWrite B Id) ∧ ∃X ,X ′,V ,V ′.writeindex 7→ X∗

Ticks+X ′ 7→ V ′ n (writeindex 7→ X ∗ Ticks+X 7→ V ′+1∗
Ticks+X ′ 7→ V ′) ∧ X = (X ′ + 1)modH)

I

UpdRead
def
= Id ∗ ((UpdVer B Id) ∧ ∃X ,Y .writeindex 7→ Yn

readindex 7→ X ∗ writeindex 7→ Y) ∧ Y = (X + 1)modH)

I

UpdData
def
= ((UpdData ∨ UpdRead) B Id) ∧

∨
j∈[0,...,N−1] ∃X .(Vector(X)(j)∗

writeindex 7→ X n Vector(X)(j) ∗ writeindex 7→ X) ∗ Id

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

FM Approach: Program Description

I We have transformed the program into a description of the
possible atomic steps it may take that affect computer state

I

G
def
= (Id ∨ UpdData ∨ UpdWrite ∨ UpdVer ∨ UpdRead) ∧ (I n I)

R
def
= Id ∧ (I n I)

M def
= �(R ∨ G)

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Verification: First Attempt At Read Data Integrity

I Now state the theorem we seek to prove, and show that our
machine implies that theorem

I Prove key lemma:

M⇒

A︷ ︸︸ ︷

Ticks+h X I

B︷ ︸︸ ︷
Vector(h) D ∧

Vector(h) D ′︸ ︷︷ ︸
C

∗ Ticks+h X︸ ︷︷ ︸
D

⇒ (D = D ′)

I This is unprovable, therefore there is a flaw in our design

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Verification: Example of Read Strategy Problem

I There is a brief span of time where the data becomes
inconsistent without a change in the version number

I An example interleaving that illustrates the problem with our
read strategy

I The reader cannot detect corruption in the read

V V W W W WWW

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Verification: Improved Read Strategy

I Check the position of the write index in between the first
version check and the actual reading of data

I If the write index is pointing to the current slot (i.e. we are in
the active write portion of the cycle, then assume that our
data is corrupted

I If the version number has changed during the read, also
assume the data is corrupted

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Verification: Data Read Integrity Theorem

I Able to successfully complete proof of data read integrity
I Improved key lemma:

I

M⇒

A︷ ︸︸ ︷

Ticks+h X I

B︷ ︸︸ ︷
writeindex h′ I

C︷ ︸︸ ︷
Vector(h) D ∧

Vector(h) D′︸ ︷︷ ︸
D

∗ Ticks+h X︸ ︷︷ ︸
E

∧ (h 6= h′)︸ ︷︷ ︸
F

⇒ (D = D′)

I When a read completes, the value that is returned accurately
reflects what was stored in memory for that state vector
element during the read; and that value was stable during the
read, i.e. no writer was altering it or may have altered it
during that time.

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Conclusions

I Towards practical application of formal methods in the design
of medical systems

I Moving in the direction of incrementally introducing FM into
development process, using the SAW as a test case

I Certify properties for critical pieces of reusable framework in
which testing is inadequate

I Immediate benefit to the surgical assistant workstation
I Found and fixed a design flaw in the SAW software
I Guaranteed that there are no more bugs in the state-table

component that could unexpectedly impact the data integrity
of the state vector

I Enumerated specific axioms on which this guarantee rests

