Applying Formal Methods to Prove
Correctness of Surgical Robot Software

Peter Kazanzides Yanni Kouskoulas Zhong Shao
Computer Science Applied Physics Lab Computer Science
Johns Hopkins Univ. Johns Hopkins Univ. Yale Univ.

HCSS, Annapolis MD, May 4, 2011

Surgical Robotics (Cyber-Physical Systems)

==y

da Vinci Surgical Robot

Figures courtesy of Intuitive Surgical, Inc.

da Vinci research opportunities

Augmented Reality
* Preoperative images
 Intraoperative data

Mechanical Assistance

N _— e =—-

e Virtual fixtures

-~
-

* Motion primitives

Retinal Microsurgery System

A A

Stereo video

Surgical
multi-spectral ‘ Workstation
light source -

Spectroscopy >

Hand-held
active tremo
reduction

\ 4

Robot control

(MICRON) w . Steady hand :
e _ _ & sensing
o microsurgical
S robots
e

¢
20-25 gauge tools & sensors (proximity, force, ischemia, OCT)

NIH EB 007969 Credit: Russell Taylor

Surgical Assistant Workstation (SAW)

SAW application

A =
robot [~ 3D UI
video [motion math IRE

/ proc.

stereo viewer video
out

\ / OpenIGTLink [5=== IS—
._1.-'--;.: l" R |_- N 1

- mono/stereo haptic devices
da Vinei © robot video

Joint development with Intuitive Surgical, Inc.

NSF EEC 9731748, EEC 0646678, MRI 0722943

SAW Requirements

e Support robot control and real-time image processing

e Concurrent execution within a process (multi-
threading) and between processes

 Plug & play of devices
« Safety for clinical testing

Application ~ Supervisory/Trajectory Servo Control
(non-rea'_time) Control ("‘100 HZ) ("‘1000 HZ) t-:l t| t]_

— Video source 5 52 5

- Filter #1 Si 51 S3
Compute Goal Interpolate o

API B on Trajectory Setpoint s Filcer &2 5 5 5
Q
@

Compute Renderer i 52 S3
Control H

Latency

Compute Joint
Goals

Hierarchical multi-rate robot control Real-time video stream

SAW Design

 Component-based software architecture
— Within process and between processes
— Uses cisst C++ libraries

Provided J—
o

Interfaces

cccomponents»
mtsComponent

State tables

Tnput
Interfaces

33— | Buffer
<B.*

Required
s | | Interfaces
Fuent <@LFy

Hand lers

Output
Interfaces

Joint setpoints,
feedback ‘\

ICE for data exchange between
components in different processes

Efficient, lock-free data exchange
between components in same process

« State table (single writer,
multiple readers)

» Mailboxes (single reader/writer
FIFO)

Joint |£ E Visual |£ E
Robot ervo servo q App i
Text, graphics
Stream : /
Manager arget pos —,
I
’ P P

Cameras itz 40 Pl |_ OverlayL Render

Capture|6 ﬂ Target |6 I |6 ﬂ

—— Display

[J Application component (continuous task)

[0 Robotcontrol components (periodic tasks)

[0 Video components (Stream Manager and SVL filters)

] Interfaces (P=provided, R=required,
Q=output, I=input)

Medical Device Safety

 Medical device safety: IEC 60601
 Medical device SW life cycle: IEC 62304

 Risk management: ISO 14971

— Failure Modes Effects and Criticality Analysis
(FMECA), IEC 60812

Focus on process, traceability, and testing

SAW Testing

Automated unit testing framework (uses CDash)

’) CDash - cisst - Mozilla Firefox
File Edit View History Bookmarks Tools Help
€. c . @ hitp://www cisst.org/cisst/CDash/index php?project=cisst G-
12 Most Visited || Getting Started = Latest Headlines |1 Free Hotmail || Suggested Sites | | Web Slice Gallery
| @ CDash - cisst [=] &

Login Thursday, harch 17 2011 12:39:58 EDT B

CISST
$ ERCICISST Dashboard

— N

DASHBOARD CALENDAR PREVIOUS CURRENT PROJECT
e e e ——— ——

Mo update data as of 2011-03-17T701:00:00 EDT Help

Update Configure Build Test
Site Build Name Build Time =
Files | Min | Error Warn Min Error Warn Min | NotRun | Fail | Pass | Min
Damwin-Make-gee-4.0 1-Release- .
lest-ramus local CoveNuOsRoPMIBIv-CNe Bl | 12 | 02[0 0 o7 RGN 50| 115 [IRGRNY 15 | 103 (G 201 105171020711
Linu¢-Make-gee-4.1.2-Debug- .
cigst CoVeNulnOsRoPIVISYDY- 2 o e 0 0.1 [EEEERNNSTRN 13 5 JECREE oo) 0 1 1-05-17701.00:32
e = = El +2 N EOT
Py-Cile B &
Linux-Make-gec-4.1.2-Debug- A e Ee 15 | 1082 |44 &) 2011-03-17T03:00.29
Lt CoveNuosroPmiSv.Cne B@ (8 OfOEEREEE 0.1 B0 S0 | 139 0 2 | = EDT
Linuchake-geed 1.2 Release- : ‘ ‘ . y
cisst CoveMNulnCsRoPIVISYDY- 12| o 0 01| O4s | 50 [l -0 177020031
& = = = +« ECT
Py-Cile &l
Windows-Niake-Debug- .] |
LCSR-CAPITATE CoVeNUOsRoPIMISYDy-Cite B 0 06[50 | 2| o |zt 1 éﬁgg.os.mmm 47

What about lock-free mechanisms for data exchange
between concurrent threads?

Formal Methods to the Rescuel!

 Use FM to validate a small subset of SAW
(data exchange primitives)
— Most difficult to validate by testing
— Incremental introduction of FM

k
CPS Interface

SW Design CPS Interface Model

Safety Properties

[b Vector]
Vectar{h) = [F » Ticks+h =~ X D=p
= Vectonr] p
Vector Y « Tick h N " D L
T CPs Interface Safety

Cyber-Physical System
(cPs)

,,,,,

Verified CPS hr
Interface Code e
= 4 4 oy
s oy -
CPS Interface Model | W— suak pres
whiteboard |— e
CPS Interface Code .. poi. gy "
o bal Vector [N] (M), IndexReader, ImdexwWriter, Ticka(K]; lr-_\':‘:lﬂ
w1y | . (8] e+ % —
14 a o i
1
i
I
1

CP5 Interface Safety
Properties Proof

Goal

Model Driven Design: code generation from verified models

» (At least for a critical subset of code)

Cyber-Physical System
(CPS)

Verified CPS
Interface Code

CPS Interface Code
00 global Vector [N] [H], IndexReader, IndexWriter, Ticks[H];

12 int Get(int data[N]) {

01 void Advance(int data[N]) { 13 local rd, curTicl

02 local old, i, tmp, wr;

L . 14 curTic2, i;
g: :‘1; ;153‘1‘:2:‘::‘3 15 rd = IndexReader;
g 16 curTicl = Ticks[rd];

05 Vector[i] [o1d] = data[i];
06 wr = (old + 1) mod H;

07 IndexWriter = wr;

08 tmp = Ticks[old] + 1;

09 Ticks[wr] = tmp;

17 for (i=l
18 datali]
19 curTic2 = Ticks[rd];

1€H;i44)

21 return 1;
:(l’ Indexfeader = old; 22 else return 0;
23 }

Vector[i] [rd];

20 if (curTiel == curTic2)

CPS Interface

Pa—

Code Gen

CPS Interface Model
Safety Properties

— e, —
Ticks+h ~» X » Vector(fi) ~ DA

Vector(lt) ~ I = Ticks+h ~ X = (D= D)
—_—
v s " <
Vector(i) ~ ' s Ticks+h « X A (b # i) = (D = DY)
N

] E F

CPS Interface Model

TArmay = @icy,,. -1 Ticks+i—r _
Vector(i)(j) % Vectix N+ jws_
Vector = ®cp,. v Bico, -y Vector(i)(7))

I = 3X.Y.TArray « Vector + IndexReader — X
IndexWriter — Y

Vector(i) — D = @,

UpdWrite % Id « ((UpdData &= Id) A 3X, X" Indexiriter — Y
Indexiriter — X' A X' = (X + 1)modH)

yVec+i x N 4 j D(i, j)

UpdVer % Id « ((UpdWrite > Id) A 3X, X", V, V" Indexiriter — X+
Ticks+ X'+ V'« (IndexWriter »+ X s Ticks+ X s V'i-1s
Ticks+ X' — V) A X = (X' + 1)modH)

UpdRead ' Id = ((UpdVer &> Id) / 3X, V. Indexkiriter — ¥
IndexReader — X + Indexiriter — ¥) AY = (X + 1)mod /)

UpdData ' ((UpdData v UpdRead) & Id) A/, v, 3X (Vector(X)(j)«
Indexiriter — X x Vector(X)(j) + Indexiriter — X) «Id

(Id v UpdData v UpdWrite v UpdVer v UpdRead) A (]«)
R WA)
B(RVG)

@

¥

Ticks+ /i~ X w IndexWriter — ' o Vector(lt] « D/ | c—

coQ

HLRG
Mechanization

CPS Interface Safety
Properties Proof Failure

[Theore}
ss
riple A

[Thecrem FRM : V(P Q R : tprop](C : stm),
(vss. Rs — idprogression s5' — Rs') —
riple P € Q — triple (P * R) C (Q * R)

intros P Q R C sidecond H. intros

lependent induction H

bpply triple.intro; intros ¢ u tid HO.

Kependent induction H

lgeneralize (unrelated state satisfies t1 t2 t P H1 HO); intros

A

intro
ut (forall £, step.trace.star tid (C, t1) (abort, t')). intros

ntros fsplit. generalize (H ¢ u tid H3); intros.
: jon Ha. assumpt
>

pply |

fepend

ize (trace frame C t t1 €2 tid HS HO u H4). intros

plit. g
nversid
ut (fof

'

HE as [ul H7); clear HG.

inversion H7 as [u2 HB]; clear HT

dependent induction HB. dependent induction H7
igeneralize (H t1 ul tid H1). intros.

nversis
nversig
i

e induction H9. generalize (H10 HB). intros.
eapply (tsep_conj.intro). apply H. assumption
apply sidecond. apply H2. assumption. intros.

ze (H tl t' tid H1). intres.

depend

induction HS. apply HS.

fapply

[Qed.

D
Qed

teep_conj mtra). apply HG. sseamption.

apply sidecond. apply H2. assumption. intros
lgeneralize (H t1 t' tid H1). intros.
Kiependent induction HS. apply H5.

CPS Interface Safety
Properties Proof

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: State Vector Storage/Access

» Consider a system that has

“

> A single “writer” thread

» A single storage location for the state vector, with a version 'v'
to distinguish between updates

» Many “reader” threads

=

» Slow readers’ data will be corrupted by a fast writer

» Readers cannot tell whether the vector has been
updated/corrupted during the read

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Circular Buffer

» SAW maintains a
circular buffer of slots

&
» Each slot contains @

storage for the state @
vector and a version
number =]

» Read and write

indices indicate most @

recent slot completely &
updated, and slot @

currently being
updated

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Starting State

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Advance Write Index

M

o
(=]

L
&

@Qé

[m]

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Update Version

M

o

[
g

@Qg%

[m]

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Advance Read Index

&2 5 Iy

S

[T
A

9
@Qé

[m]

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Write State Vector

L
&, s
B [l
a‘
& A

[m]

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Complete Write

&2 5 Iy

S

[T
A

g
gge’

[m]

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Implementation: Write Cycle

» Display one buffer slot as it changes state

» Time progresses from left to right

One cycle

Active-write portion of cycle

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Implementation: Read Strategy

» Check version before and after read to ensure no corruption of
data

> Reasoning: Writer updates version before writing, so any
reader will notice different versions if the writer changed the
data during the read

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Implementation: Detecting A Corrupted Read

» This interleaving illustrates the detection of a corrupted read
by observing a change in version numbers

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

FM Approach: HLRG Program Logic

v

HLRG predicates apply to traces, or sequences of system
states representing the progression of the system over time
» Temporal operators allow expression of statements connecting
state in the present to states in the past

v

Rely/guarantee allows reasoning about concurrent threads

v

Separation logic allows local reasoning

v

Yale colleagues developed sound proof rules that worked in
the presence of these traces and these operators!?

IX. Feng. Local rely-guarantee reasoning, In Proc. 36th ACM Symp. on
Principles of Prog. Lang., Jan. 2009

2M. Fu, Y. Li, X. Feng, Z. Shao, and Y. Zhang. Reasoning about optimistic
concurrency using a program logic for history. Yale Technical Report

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

FM Approach: Operators in HLRG

» Some operators we might encounter:

» P A Q is additive conjunction, where all of the context is used
to satisfy P and @

» P x @ multiplicative conjunction, where part of the context is
used to satisfy P and another disjoint part satisfies @

» P » @ means at some point in the past, P was true, and at
some later time, @ became true

» P> @ means at some point in the past, P was true, and
thereafer, Q held

» & P means at some point in the past or in the present, P
happened

» HP means that P holds always

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

FM Approach: Describing the Domain of Shared State

>

TArray oo ®ico,...,H—1yTicks+i— _

Vector(i)(j) & Vectix N +j—-
def Ny
Vector = ®jepo .n—1](®icpo, ... H—1)Vector(i)(j))
1% 3x. Y . TArray * Vector * readindex — X
writeindex — Y

>

Vector(i) D & ®jcpo n_yVec+i x N+ j— D(i,))

u]
o)
I
i
it

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

FM Approach: Atomic steps taken

>
UpdWrite & 1d « ((UpdData > Id) A 3X, X’ .writeindex — Xx
writeindex —» X’ A X/ = (X + 1)modH)
>
UpdVer % 1d x ((UpdWrite > Id) A 3X, X', V, V' writeindex s X*
Ticks+X’ — V’/ x (vriteindex — X # Ticks+X — V’/+1x
Ticks+ X' — V/) A X = (X' + 1)modH)
>
UpdRead %' Id « ((UpdVer > Id) A 3X, Y uriteindex — Y
readindex — X # writeindex — Y) A Y = (X 4 1)modH)
>

UpdData & ((UpdData v UpdRead) &> Id) AV ¢p, . y—1) 3X-(Vector(X)(j)*
writeindex — X x Vector(X)(j) * writeindex — X) x Id

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

FM Approach: Program Description

» We have transformed the program into a description of the

possible atomic steps it may take that affect computer state
| 2

G % (1d v UpdData v UpdWrite V UpdVer v UpdRead) A (I x 1)
R % 1da(xr)

M & BRrve)

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Verification: First Attempt At Read Data Integrity

» Now state the theorem we seek to prove, and show that our
machine implies that theorem

» Prove key lemma:

A B

Ticks—+h ~» X » Vector(h) ~» D A
Vector(h) ~» D' x Ticks+h ~ X = (D = D')
_— —-——

C D

M=

» This is unprovable, therefore there is a flaw in our design

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Verification: Example of Read Strategy Problem

> There is a brief span of time where the data becomes
inconsistent without a change in the version number

» An example interleaving that illustrates the problem with our
read strategy

> The reader cannot detect corruption in the read

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Verification: Improved Read Strategy

» Check the position of the write index in between the first
version check and the actual reading of data

» If the write index is pointing to the current slot (i.e. we are in
the active write portion of the cycle, then assume that our
data is corrupted

» If the version number has changed during the read, also
assume the data is corrupted

A N A

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Verification: Data Read Integrity Theorem

» Able to successfully complete proof of data read integrity
> Improved key lemma:

>
A B C
M Ticks+h ~» X b writeindex ~» h’ » Vector(h) ~ D A
Vector(h) ~» D’ xTicks+h ~» X A(h# h') = (D = D)
D E F

» When a read completes, the value that is returned accurately
reflects what was stored in memory for that state vector
element during the read; and that value was stable during the
read, i.e. no writer was altering it or may have altered it
during that time.

Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Conclusions

» Towards practical application of formal methods in the design
of medical systems
» Moving in the direction of incrementally introducing FM into
development process, using the SAW as a test case
» Certify properties for critical pieces of reusable framework in
which testing is inadequate
» Immediate benefit to the surgical assistant workstation
» Found and fixed a design flaw in the SAW software
» Guaranteed that there are no more bugs in the state-table
component that could unexpectedly impact the data integrity

of the state vector
» Enumerated specific axioms on which this guarantee rests

