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Surgical Robotics (Cyber-Physical Systems)



da Vinci Surgical Robot

Figures courtesy of Intuitive Surgical, Inc.



da Vinci research opportunities
Augmented Reality

• Preoperative images

• Intraoperative data

Mechanical Assistance

• Virtual fixtures

• Motion primitives
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Surgical Assistant Workstation (SAW)

Joint development with Intuitive Surgical, Inc.

NSF EEC 9731748, EEC 0646678, MRI 0722943



SAW Requirements

• Support robot control and real-time image processing
• Concurrent execution within a process (multi-

threading) and between processes
• Plug & play of devices
• Safety for clinical testing
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SAW Design

• Component-based software architecture
– Within process and between processes
– Uses cisst C++ libraries

ICE for data exchange between 
components in different processes

Efficient, lock-free data exchange 
between components in same process

• State table (single writer, 
multiple readers)

• Mailboxes (single reader/writer 
FIFO)



Medical Device Safety

• Medical device safety: IEC 60601
• Medical device SW life cycle:  IEC 62304
• Risk management: ISO 14971

– Failure Modes Effects and Criticality Analysis 
(FMECA), IEC 60812

Focus on process, traceability, and testing



SAW Testing
Automated unit testing framework (uses CDash)

What about lock-free mechanisms for data exchange 
between concurrent threads?



Formal Methods to the Rescue!

• Use FM to validate a small subset of SAW 
(data exchange primitives)
– Most difficult to validate by testing
– Incremental introduction of FM

whiteboard



Goal

Model Driven Design:  code generation from verified models

• (At least for a critical subset of code)



Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: State Vector Storage/Access

I Consider a system that has
I A single “writer” thread
I A single storage location for the state vector, with a version ’v’

to distinguish between updates
I Many “reader” threads

V

I Slow readers’ data will be corrupted by a fast writer

I Readers cannot tell whether the vector has been
updated/corrupted during the read



Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Circular Buffer

I SAW maintains a
circular buffer of slots

I Each slot contains
storage for the state
vector and a version
number

I Read and write
indices indicate most
recent slot completely
updated, and slot
currently being
updated
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Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Starting State
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Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Advance Write Index
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Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Update Version
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Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Advance Read Index
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Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Write State Vector
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Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Design: Complete Write
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Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Implementation: Write Cycle

I Display one buffer slot as it changes state

I Time progresses from left to right

V V W W W W W W X XW W W

One cycle

Active-write portion of cycle



Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Implementation: Read Strategy

I Check version before and after read to ensure no corruption of
data

I Reasoning: Writer updates version before writing, so any
reader will notice different versions if the writer changed the
data during the read



Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Implementation: Detecting A Corrupted Read

I This interleaving illustrates the detection of a corrupted read
by observing a change in version numbers

V V W W WV WW



Certifying the Concurrent State Table Implementation in a Surgical Robotic System

FM Approach: HLRG Program Logic

I HLRG predicates apply to traces, or sequences of system
states representing the progression of the system over time

I Temporal operators allow expression of statements connecting
state in the present to states in the past

I Rely/guarantee allows reasoning about concurrent threads

I Separation logic allows local reasoning

I Yale colleagues developed sound proof rules that worked in
the presence of these traces and these operators12

1X. Feng. Local rely-guarantee reasoning, In Proc. 36th ACM Symp. on
Principles of Prog. Lang., Jan. 2009

2M. Fu, Y. Li, X. Feng, Z. Shao, and Y. Zhang. Reasoning about optimistic
concurrency using a program logic for history. Yale Technical Report



Certifying the Concurrent State Table Implementation in a Surgical Robotic System

FM Approach: Operators in HLRG

I Some operators we might encounter:
I P ∧ Q is additive conjunction, where all of the context is used

to satisfy P and Q
I P ∗ Q multiplicative conjunction, where part of the context is

used to satisfy P and another disjoint part satisfies Q
I P I Q means at some point in the past, P was true, and at

some later time, Q became true
I P B Q means at some point in the past, P was true, and

thereafer, Q held
I ♦− P means at some point in the past or in the present, P

happened
I �P means that P holds always



Certifying the Concurrent State Table Implementation in a Surgical Robotic System

FM Approach: Describing the Domain of Shared State

I

TArray
def
= ~i∈[0,...,H−1]Ticks+i 7→

Vector(i)(j)
def
= Vec+i × N + j 7→

Vector
def
= ~j∈[0,...,N−1](~i∈[0,...,H−1]Vector(i)(j))

I
def
= ∃X .Y .TArray ∗ Vector ∗ readindex 7→ X∗

writeindex 7→ Y

I

Vector(i) 7→ D
def
= ~j∈[0,...,N−1]Vec+i × N + j 7→ D(i , j)



Certifying the Concurrent State Table Implementation in a Surgical Robotic System

FM Approach: Atomic steps taken
I

UpdWrite
def
= Id ∗ ((UpdData B Id) ∧ ∃X ,X ′.writeindex 7→ Xn

writeindex 7→ X ′ ∧ X ′ = (X + 1)modH)

I

UpdVer
def
= Id ∗ ((UpdWrite B Id) ∧ ∃X ,X ′,V ,V ′.writeindex 7→ X∗

Ticks+X ′ 7→ V ′ n (writeindex 7→ X ∗ Ticks+X 7→ V ′+1∗
Ticks+X ′ 7→ V ′) ∧ X = (X ′ + 1)modH)

I

UpdRead
def
= Id ∗ ((UpdVer B Id) ∧ ∃X ,Y .writeindex 7→ Yn

readindex 7→ X ∗ writeindex 7→ Y ) ∧ Y = (X + 1)modH)

I

UpdData
def
= ((UpdData ∨ UpdRead) B Id) ∧

∨
j∈[0,...,N−1] ∃X .(Vector(X )(j)∗

writeindex 7→ X n Vector(X )(j) ∗ writeindex 7→ X ) ∗ Id



Certifying the Concurrent State Table Implementation in a Surgical Robotic System

FM Approach: Program Description

I We have transformed the program into a description of the
possible atomic steps it may take that affect computer state

I

G
def
= (Id ∨ UpdData ∨ UpdWrite ∨ UpdVer ∨ UpdRead) ∧ (I n I )

R
def
= Id ∧ (I n I )

M def
= �(R ∨ G)



Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Verification: First Attempt At Read Data Integrity

I Now state the theorem we seek to prove, and show that our
machine implies that theorem

I Prove key lemma:

M⇒


A︷ ︸︸ ︷

Ticks+h X I

B︷ ︸︸ ︷
Vector(h) D ∧

Vector(h) D ′︸ ︷︷ ︸
C

∗ Ticks+h X︸ ︷︷ ︸
D

⇒ (D = D ′)


I This is unprovable, therefore there is a flaw in our design



Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Verification: Example of Read Strategy Problem

I There is a brief span of time where the data becomes
inconsistent without a change in the version number

I An example interleaving that illustrates the problem with our
read strategy

I The reader cannot detect corruption in the read

V V W W W WWW



Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Verification: Improved Read Strategy

I Check the position of the write index in between the first
version check and the actual reading of data

I If the write index is pointing to the current slot (i.e. we are in
the active write portion of the cycle, then assume that our
data is corrupted

I If the version number has changed during the read, also
assume the data is corrupted



Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Verification: Data Read Integrity Theorem

I Able to successfully complete proof of data read integrity
I Improved key lemma:

I

M⇒


A︷ ︸︸ ︷

Ticks+h  X I

B︷ ︸︸ ︷
writeindex h′ I

C︷ ︸︸ ︷
Vector(h) D ∧

Vector(h) D′︸ ︷︷ ︸
D

∗ Ticks+h  X︸ ︷︷ ︸
E

∧ (h 6= h′)︸ ︷︷ ︸
F

⇒ (D = D′)



I When a read completes, the value that is returned accurately
reflects what was stored in memory for that state vector
element during the read; and that value was stable during the
read, i.e. no writer was altering it or may have altered it
during that time.



Certifying the Concurrent State Table Implementation in a Surgical Robotic System

Conclusions

I Towards practical application of formal methods in the design
of medical systems

I Moving in the direction of incrementally introducing FM into
development process, using the SAW as a test case

I Certify properties for critical pieces of reusable framework in
which testing is inadequate

I Immediate benefit to the surgical assistant workstation
I Found and fixed a design flaw in the SAW software
I Guaranteed that there are no more bugs in the state-table

component that could unexpectedly impact the data integrity
of the state vector

I Enumerated specific axioms on which this guarantee rests




