Architecture-Based Self-Protection: Composing and Reasoning about Denial-of-Service Mitigations

HotSoS 2014

Bradley Schmerl⁺, <u>Javier Cámara</u>⁺, Jeffrey Gennari^{*}, David Garlan⁺, Paulo Casanova⁺, Gabriel A. Moreno^{*}, Thomas J. Glazier⁺, Jeffrey M. Barnes⁺

Institute for Software Research+ and Software Engineering Institute*

Carnegie Mellon University

April 8, 2014

Context and Motivation

- Modern software systems operate in constantly changing environments
 - Security: constant appearance of new threats, vulnerabilities
- Current approaches to self-protection
 - Agnostic to system specifics
 - Threat-specific
 - Ignore business context
 - Application-level approaches often designed as part of the system

Architecture-Based Self-Protection

- Architecture-based self-adaptation has addressed these issues in the context of other properties (e.g., performance, cost)
- Architecture-based self-protection*
 - Separates concern of protection into a control layer
 - Uses architecture models as a basis for reasoning about detection and mitigation
 - Allows reasoning about security in the context of other business properties
 - Promotes reuse of threat detection and self-protection strategies across systems

* Yuan, E., Malek, S., Schmerl, B., Garlan, D., and Gennari, J. **Architecture-based self-protecting software systems**. In *Proceedings of the 9th International ACM Sigsoft Conference on the Quality of Software Architectures (QoSA 2013)*.

In this Talk

- Formal reasoning about the composition of mitigation approaches
 - When to apply particular tactics and why
 - Impact of security tactics on other system qualities
 - Composing security tactics into strategies
 - Context-sensitive strategy selection
 - Utility theory

Analysis of the state space

- Which strategies get selected when
- Effect of strategies on system utility

Outline

- Architecture-based self-adaptation in Rainbow
- Example: Denial of Service in Znn
- Architecture-based self-protection in Rainbow
- Validating the strategy space
 - Strategy selection analysis
 - Strategy impact analysis

Conclusions and future work

Rainbow Approach

- A framework that
 - Allows one to add a **control layer** to existing systems
 - Uses architecture models to detect problems and reason about repair
 - Can be **tailored to specific domains**
 - Separates concerns through multiple extension points: probes, actuators, models, fault detection, repair
- A language (Stitch) for programming repair actions
 - **Tactic** primitive adaptation step
 - **Strategy** decision tree for tactic execution

Rainbow Framework Overview

Stitch: A Language for Specifying Self-Adaptation Strategies

- Control-system model: Selection of next action in a strategy depends on observed effects of previous action
- Value system: Utility-based selection of best strategy allows context-sensitive adaptation
- Asynchrony: Explicit timing delays capture "settling time"
- Uncertainty: effect of a given tactic/strategy is known only within some probability

```
1 strategy Challenge [unhandledMalicious || unhandledSuspicious] {
2 t0: (cNotChallenging) -> addCaptcha () @[5000] {
3 t0a: (success) -> done;
4 t0b: (default) -> fail;
5 }
6 t1: (lcNotChallenging) -> forceReauthentication () @[5000] {
7 t1a: (success) -> done;
8 t1b: (default) -> fail;
9 }
10 }
```


Example: Denial of Service in Znn

Typical news website infrastructure

- Pool of replicated servers connected to load balancer
 - Size can be dynamically adjusted
- Servers can deliver contents with different fidelity levels (text, images, videos...)
 - Content fidelity can be dynamically changed
- Application layer DoS (e.g., Slowloris)
- Quality objectives
 - Performance: request-response time for legitimate clients
 - Cost: number of active servers
 - Maliciousness: percentage of malicious clients
 - Annoyance: disruptive side effects of tactics

Tactics and Strategies

- DoS mitigation tactics/strategies selected to provide interesting analytical situations
 - For example, Adding capacity is much less aggressive than Blackholing, but it is more costly

Tactic	Description	Strategy	Description	
Add capacity:	Activate additional servers to distribute the workload	Outgun/Absorb	Combines Add capacity and Reduce service	
Blackhole	Blacklists clients, requests are dropped			
		Eliminate	Combines Blackholing and Throttling	
Reduce service	Reduce content fidelity level (e.g., text vs. images)			
		Challenge	Combines Captcha	
Throttle	Limits the rate of requests accepted		and Reauthenticate	
Captcha	Forward requests to captcha processor to verify that the requester is human			
Reauthenticate	Forces clients to reauthenticate			

Tactics and Strategies

tactic addCaptcha () { 1 condition {exists lb:D.ZNewsLBT in M.components | !!b.captchaEnabled;} 2 3 action { set lbs = {select I : D.ZNewsLBT in M.components | II.captchaEnabled}; 4 5 for (D.ZNewsLBT I : lbs) { M.setCaptchaEnabled (I, true); 6 7 3 8 effect {forall lb:D.ZNewsLBT in M.components | lb.captchaEnabled;} 9 10 }

1	strategy Challenge [unhandledMalicious unhandledSuspi	cious] {
2	to: (eucoses) > doro:	
2	t0h: (default) - fail:	
4	tob: (default) -> fail;	
5	}	
6	t1: (IcNotChallenging) -> forceReauthentication () @[500	0] {
7	t1a: (success) -> done;	
8	t1b: (default) -> fail;	
9	}	
10	}	

Strategy Selection

Tactic cost/benefit vectors

Tactic	Response Time (R) Malicious Clients (M)		Cost (C)		User Annoyance (A)			
	Δ Avg. Resp.	ΔU_R	Δ Malicious	ΔU_{M}	Δ Oper-	ΔU_{C}	Δ User An-	ΔU_A
	Time (ms.)		Clients (%)		ating Cost		noyance (%)	
					(usd/hr.)			
enlistServers	-1000		0	=	+1.0	$\downarrow\downarrow\downarrow\downarrow$	0	=
lowerFidelity	-500	$\uparrow\uparrow$	0	=	-0.1	\uparrow	0	=
addCaptcha	-250	\uparrow	-90	$\uparrow\uparrow\uparrow$	+0.5	$\downarrow\downarrow$	+50	$\downarrow \downarrow \downarrow$
forceReauthentication	-250	↑	-70	$\uparrow\uparrow$	0	=	+50	$\downarrow\downarrow$
blackholeAttacker	-1000	$\uparrow\uparrow\uparrow$	-100	$\uparrow\uparrow\uparrow$	0	=	+50	$ \downarrow\downarrow$
throttleSuspicious	-500	$\uparrow\uparrow\uparrow$	0	=	0	=	+25	\downarrow

Utility functions

UR	UM	Uc	U _A
0:1.00	0:1.00	0:1.00	0:1.00
100:1.00	5:1.00	1:0.90	100:0.00
200:0.99	20:0.80	2:0.30	
500:0.90	50:0.40	3:0.10	
1000:0.75	70:0.00		
1500:0.50			
2000: 0.25			
4000:0.00			

Utility preferences

Scenario	Priority	WUR	WUM	WUC	WUA
1	Minimizing number of	0.15	0.6	0.1	0.15
	malicious clients.				
2	Optimizing good client experience.	0.3	0.3	0.1	0.3
3	Keeping cost within bud- get.	0.2	0.2	0.4	0.2

Current state Aggregate impact Expected state [1500,90,2,0] +[-250,80,0.25,50] =[1250,10,2.25,50]

Expected utility

 $[U_R(1250), U_M(10), U_C(2.25), U_A(50)] = [0.625, 0.933, 0.25, 0.5]$

 $0.625^{\circ}0.3 + 0.933^{\circ}0.3 + 0.25^{\circ}0.1 + 0.5^{\circ}0.3 = 0.6425$

Validating the Strategy Space

- Given an adaptation model:
 - Will the adaptation manager make reasonable strategy selections in all circumstances?
 - What will be the effect of those selections?
- Use probabilistic model checking to analyze properties of the adaptation model
 - Enables exhaustive analysis of state space
 - Quantitative properties
 - Translate adaptation models into PRISM specifications
 - Discrete-Time Markov Chains extended with rewards
 - Use reward-based probabilistic (PRCTL) properties to analyze
 - Strategy selections
 - Strategy impact on utility

Formal Model – Tactics and Strategies

- Target system encodes
 - System state
 - Tactic impact
- Adaptation strategies mirror Stitch strategy trees for the execution of tactics

Formal Model – Utility Profile

- Utility profile encodes utility functions and preferences as reward structures
 - Rewards incorporated to states corresponding to leaf nodes in model

Utility functions for DoS

UR	U _M	Uc	UA
0:1.00	0:1.00	0:1.00	0:1.00
100:1.00	5:1.00	1:0.90	100:0.00
200:0.99	20:0.80	2:0.30	
500:0.90	50:0.40	3:0.10	
1000:0.75	70:0.00		
1500:0.50			
2000: 0.25			
4000:0.00			

Utility preferences for DoS

Scenario	Priority	WUp	WUM	WUc	WUA
1	Minimizing number of malicious clients.	0.15	0.6	0.1	0.15
2	Optimizing good client experience.	0.3	0.3	0.1	0.3
3	Keeping cost within bud- get.	0.2	0.2	0.4	0.2

DoS utility profile encoding

formula uM = (mc>=0 & mc <=5? 1:0)+(mc>5 & mc <=20? 1+(0.80-1)*((mc-5)/(20-5)):0)+(mc>20 & mc <=50? 0.80+(0.40-0.80)*((mc-20)/(50-20)):0)+(mc>50 & mc <=70? 0.40+(0.00-0.40)*((mc-50)/(70-50)):0)+(mc>70 ? 0:0);

rewards "rGU" // Global Utility leaf & scenario=1 : 0.15*uR +0.6*uM +0.1*uC +0.15*uA;

endrewards

Strategy Selection Analysis

- Based on quantifying expected utility after strategy execution
- Different preferences result in different strategy selections
- Choices are consistent

Strategy Impact Analysis

- Quantify expected selected strategy impact on utility
 - $\Delta U = Expected$ utility Current utility

- No states show negative ΔU
- Similar utility improvement across scenarios
 - Independent of strategy selections

Conclusions and Future Work

Principled approach to self-protection

- Compose existing mitigation tactics into strategies
- Formally reason about strategy selection and impact
 - Security in the context of other business properties

Future work

- Extended validation
 - Further adaptation steps ahead
 - Additional properties
- Proactive adaptation approaches (e.g., Moving target)

