
Architecture-Based Self-Protection:
Composing and Reasoning about

Denial-of-Service Mitigations

HotSoS 2014
Bradley Schmerl+, Javier Cámara+, Jeffrey Gennari*, David Garlan+, Paulo
Casanova+, Gabriel A. Moreno*, Thomas J. Glazier+, Jeffrey M. Barnes+

Institute for Software Research+ and Software Engineering Institute*
Carnegie Mellon University

April 8, 2014

Context and Motivation

!  Modern software systems operate in
constantly changing environments
"  Security: constant appearance of new threats,

vulnerabilities

!  Current approaches to self-protection
"  Agnostic to system specifics
"  Threat-specific
"  Ignore business context
"  Application-level approaches often designed as

part of the system

2

Architecture-Based Self-Protection
!  Architecture-based self-adaptation has addressed

these issues in the context of other properties (e.g.,
performance, cost)

!  Architecture-based self-protection*
"  Separates concern of protection into a control layer
"  Uses architecture models as a basis for reasoning about

detection and mitigation
"  Allows reasoning about security in the context of other

business properties
"  Promotes reuse of threat detection and self-protection

strategies across systems

* Yuan, E., Malek, S., Schmerl, B., Garlan, D., and Gennari, J. Architecture-based self-protecting software
systems. In Proceedings of the 9th International ACM Sigsoft Conference on the Quality of Software
Architectures (QoSA 2013).

3

In this Talk
!  Formal reasoning about the composition of

mitigation approaches

"  When to apply particular tactics and why
!  Impact of security tactics on other system qualities
!  Composing security tactics into strategies

"  Context-sensitive strategy selection
!  Utility theory

"  Analysis of the state space
!  Which strategies get selected when
!  Effect of strategies on system utility

4

Outline
!  Architecture-based self-adaptation in Rainbow

!  Example: Denial of Service in Znn

!  Architecture-based self-protection in Rainbow

!  Validating the strategy space
"  Strategy selection analysis
"  Strategy impact analysis

!  Conclusions and future work

5

Rainbow Approach
!  A framework that

"  Allows one to add a control layer to existing systems
"  Uses architecture models to detect problems and reason

about repair
"  Can be tailored to specific domains
"  Separates concerns through multiple extension points:

probes, actuators, models, fault detection, repair

!  A language (Stitch) for programming repair actions
"  Tactic – primitive adaptation step
"  Strategy – decision tree for tactic execution

© David Garlan 2014 6

© David Garlan 2014

Rainbow Framework Overview

System 
Layer

Architecture Layer

Target System

Translation
Infrastructure

Adaptation
Manager

Model Manager

Strategy
Executor

 System API ProbesEffectors

Gauges

Architecture
Evaluator

7

Stitch: A Language for Specifying  
Self-Adaptation Strategies
!  Control-system model: Selection of next action in a strategy

depends on observed effects of previous action
!  Value system: Utility-based selection of best strategy allows

context-sensitive adaptation
!  Asynchrony: Explicit timing delays capture “settling time”
!  Uncertainty: effect of a given tactic/strategy is known only

within some probability

© David Garlan 2014 8

Example: Denial of Service in Znn
!  Typical news website infrastructure

"  Pool of replicated servers connected to load
balancer

!  Size can be dynamically adjusted

"  Servers can deliver contents with different
fidelity levels (text, images, videos...)

!  Content fidelity can be dynamically changed

!  Application layer DoS (e.g., Slowloris)

!  Quality objectives
"  Performance: request-response time for

legitimate clients

"  Cost: number of active servers

"  Maliciousness: percentage of malicious clients

"  Annoyance: disruptive side effects of tactics

9

Tactics and Strategies

10

!  DoS mitigation tactics/strategies selected to provide interesting
analytical situations

"  For example, Adding capacity is much less aggressive than Blackholing, but it is more
costly

Tactic Description

Add capacity: Activate additional servers to
distribute the workload

Blackhole Blacklists clients, requests are
dropped

Reduce service Reduce content fidelity level
(e.g., text vs. images)

Throttle Limits the rate of requests
accepted

Captcha Forward requests to captcha
processor to verify that the
requester is human

Reauthenticate Forces clients to reauthenticate

Strategy Description

Outgun/Absorb Combines Add
capacity and Reduce
service

Eliminate Combines Blackholing
and Throttling

Challenge Combines Captcha
and Reauthenticate

Tactics and Strategies

11

Strategy Selection

12

Current stateUtility functions

Utility preferences

Tactic cost/benefit vectors

[1500,90,2,0]+[-250,80,0.25,50]=[1250,10,2.25,50]
Aggregate impact Expected state

Expected utility

Validating the Strategy Space

!  Given an adaptation model:
"  Will the adaptation manager make reasonable strategy

selections in all circumstances?
"  What will be the effect of those selections?

!  Use probabilistic model checking to analyze properties
of the adaptation model
"  Enables exhaustive analysis of state space

!  Quantitative properties

"  Translate adaptation models into PRISM specifications
!  Discrete-Time Markov Chains extended with rewards

"  Use reward-based probabilistic (PRCTL) properties to analyze
!  Strategy selections
!  Strategy impact on utility

13

Formal Model - Tactics and Strategies

14

Target System

Adaptation Strategies

!  Target system encodes
"  System state
"  Tactic impact

!  Adaptation strategies
mirror Stitch strategy
trees for the execution
of tactics

Formal Model – Utility Profile

15

DoS utility profile encoding

Utility functions for DoS Utility preferences for DoS

!  Utility profile encodes utility functions and preferences as reward
structures
"  Rewards incorporated to states corresponding to leaf nodes in model

Strategy Selection Analysis

16

Minimize malicious clients Optimize good client experience

!  Based on quantifying expected utility after strategy execution
!  Different preferences result in different strategy selections
!  Choices are consistent

0 1,000 2,000 3,000 4,000

0

20

40

60

80

100

Response Time (ms.)

M
al

ic
io

us
C

lie
nt

s
(%

)

Scenario 1 (wUR=0.15,wUM=0.6,wUC=0.1,wUA=0.15)

Outgun (11.54 %)
Eliminate (49.44 %)
Challenge (39.02 %)

0 1,000 2,000 3,000 4,000

0

20

40

60

80

100

Response Time (ms.)
M

al
ic

io
us

C
lie

nt
s

(%
)

Scenario 2 (wUR=0.3,wUM=0.3,wUC=0.1,wUA=0.3)

Outgun (26.92 %)
Eliminate (49.06 %)
Challenge (24.02 %)

0 1,000 2,000 3,000 4,000

0

20

40

60

80

100

Response Time (ms.)

M
al

ic
io

us
C

lie
nt

s
(%

)

Scenario 3 (wUR=0.2,wUM=0.2,wUC=0.4,wUA=0.2)

Outgun (15.38 %)
Eliminate (72.42 %)
Challenge (12.20 %)

Figure 4: DoS strategy selection

0 1,000 2,000 3,000 4,000

0

20

40

60

80

100

Response Time (ms)

M
al

ic
io

us
C

lie
nt

s
(%

)

Scenario 1 (Avg. �U = +0.1972, #S #�U = 0)

0 1,000 2,000 3,000 4,000

0

20

40

60

80

100

Response Time (ms.)

M
al

ic
io

us
C

lie
nt

s
(%

)

Scenario 2 (Avg. �U = +0.2173, #S #�U = 0)

0 1,000 2,000 3,000 4,000

0

20

40

60

80

100

Response Time (ms)

M
al

ic
io

us
C

lie
nt

s
(%

)

Scenario 3 (Avg. �U = +0.1448, #S #�U = 0)

Figure 5: DoS strategy selection impact on utility

where response times above 2000 ms have much lower utility.

7. IMPLEMENTATION AND EXPERIMEN-
TATION

In this section, we explain how the approach previously described
is realized in our Rainbow implementation. Rainbow is imple-
mented in Java as a distributed system, consisting of a Master (which
manages the adaptation logic) and Delegates (deployed in the target
system to manage probes, e↵ectors, and gauges), communicating
over a custom event bus. The following features were implemented
in Znn:

1. Throttling and blackholing were implemented using the Apache
modules mod_proxy [30] and mod_security2 [31]. Concomi-
tant probes and e↵ectors read and update the associated config-
uration files, restarting the Apache servers on the load balancers
to achieve dynamic reconfiguration.

2. The PHP library secureimage [25] was used to implement Capt-
cha. The PHP code for Znn reads a configuration file to check if
this feature is enabled, and probes and e↵ectors read and write
this file.

3. Simple authentication is implemented in the PHP files. A con-
figuration file is read by Znn to check if the feature is enabled,
and probes and e↵ectors used to report and update this option
dynamically.

To simulate an application-level attack, one particular request
in Rainbow is especially CPU intensive. Malicious attackers that

spawn multiple concurrent instances of these requests will quickly
drive response time to benign clients above their threshold. To au-
tomate both kinds of clients, we use Apache JMeterTM [29]: the
script for benign clients sends a request to Znn every second, and
has Znn-specific cases for handling Captcha and authentication; the
script for malicious clients sends 20 requests per second, and has
no Znn-specific code.

We set up the experiment on a cluster of virtual machines run-
ning on one host with four 2.8GHz CPU cores and 24GB memory.
Znn was configured with one database, one load balancer, two ac-
tive servers, and a spare server. The Model Manager, Architecture
Evaluator, Adapation Manager, and Strategy Executor components
of Rainbow, and a benign client runs on the host, while two mali-
cious users run on separate virtual machines. While this does not
reflect a configuration that accurately simulates a DoS attack, it is
su�cient to illustrate how Rainbow chooses di↵erent strategies in
di↵erent scenarios, and that it can mitigate attacks by the malicious
client.

Figure 6 shows the results of running a DoS attack on Znn in
three scenarios. In each case, an attack starts 15 seconds into the
run (labeled ’Attack’ in the figure) and continues until the end. In
Figure 6(a), the experiment is run without Rainbow. As can be
seen, the DoS attack causes response times to rise from around 2
seconds to over 10 seconds and remain high for the duration of the
experiment. Figures 6(b) and (c) show runs with Rainbow manag-
ing Znn for scenarios 1 and 2 from Table 3. In both cases, Rain-
bow responds to the DoS attack and the response time of the good
clients returns to around 2 seconds. Detection of maliciousness in
both cases occurs the first time that Rainbow detects a precipitous
rise in response time (labeled ’Detected’ in the figures). Detection

Strategy Impact Analysis

17

Minimize malicious clients Optimize good client experience

!  No states show negative ΔU
!  Similar utility improvement across scenarios

"  Independent of strategy selections

!  Quantify expected selected strategy impact on utility
!  ΔU = Expected utility – Current utility

Conclusions and Future Work
!  Principled approach to self-protection

"  Compose existing mitigation tactics into strategies
"  Formally reason about strategy selection and impact

!  Security in the context of other business properties

!  Future work
"  Extended validation

!  Further adaptation steps ahead
!  Additional properties

"  Proactive adaptation approaches (e.g., Moving target)

18

