Mats Heimdahl, CASCON 2011

Assurance Cases and Software: Is there any evidence¹?

1: Apologies to John McDermid for stealing from "Software Safety: Where is the evidence?"

Mats P. E. Heimdahl

University of Minnesota Software Engineering Center Department of Computer Science and Engineering University of Minnesota 4-192 EE/CS; 200 Union Street SE Minneapolis, MN 55455

Domains of Concern

These

UNIVERSITY OF MINNESOTA

Software Engineering Center

Mats Heimdahl, CASCON 2011

Regulation and Approval Today

Process Based Standards

- 1. Follow these steps
- 2. Produce these documents

Aats Heimdahl CA

3. Hope for the best

Does Current Regulation Work?

It Is Not Working (as well as it could)

- Do not necessarily lead to desired quality
 - Aircraft accidents and mishaps that should not happen
 - Excessive number of medical device recalls
 - Security breaches are rampant
- Rigid standards inhibit adoption of new tools and techniques
- Questionable correlation between prescribed activities and failure rate

Mats Heimdahl, CASCON

• Very costly?

It Clearly Helps

- Certification and approval promotes a "quality" culture
 - Helps justify the cost
 - Balances "get it done" with "get it right"
- Enforces rigorous process
 - But limits innovation
- Self selection of engineers and developers
- It is the culture, not the standard or regulation, that produces quality products

UNIVERSITY OF MINNESOTA

Recent Reports

• Software for Dependable Systems: Sufficient Evidence?

Aats Heimdahl, CA

- Daniel Jackson, Martyn Thomas, and Lynette I. Millett, Editors, Committee on Certifiably Dependable Software Systems, National Research Council.
- Medical Devices and the Public's Health: The FDA 510(k) Clearance Process at 35 Years
 - Committee on the Public Health Effectiveness of the FDA 510(k) Clearance Process: Institute of Medicine.

University of Minnesota

FDA 510(k) Process

• Demonstrate that your new device is "substantially equivalent" to a previous predicate device already on the market

Certification

- The process of assuring that a product or process has certain stated properties, which are then recorded in a certificate.
 - Certification usually involves assurance by an independent party, although the term is also used analogously for customer (second-party) and developer (first-party) assurance.

Adopted from NRC Report: Software for Dependable Systems: Sufficient Evidence?

Mats Heimdahl, CASC

UNIVERSITY OF MINNESOTA

Goals

• Explicit claims of dependability

– A system cannot exhibit all desi EVIDENCE under all conditions; be assumptions, envi VIDENCE

Mats Heimdahl, CASCON

• Based or

*a*cilitate innovation

EVIDENC

UNIVERSITY OF MINNESOTA

EVIDE

Software Engineering Center

EVIDENCE

EVIDENCE

Claim, Evidence, and Argument

- Explicit Claims
 - State explicitly what properties (safety, security, reliability, performance, etc.) the system must possess and under which assumptions
- Supporting Evidence
 - Results of observing, analysing, testing, simulating and estimating the properties of a system that provide the fundamental information from which safety can be inferred
- High Level Arguments
 - Explanation of how the available evidence can be reasonably interpreted as indicating acceptable dependability

Argument without Evidence is **<u>unfounded</u>** Evidence without Argument is **<u>unexplained</u>**

Mats Heimdahl, CAS

- Tim Kelly, 2008

UNIVERSITY OF MINNESOTA

Assurance Cases

To construct an assurance case we need to:

- make an explicit set of claims about the system
- produce the supporting evidence
- provide a set of arguments that link the claims to the evidence
- make clear the assumptions and judgments underlying the arguments
- allow different viewpoints and levels of detail.

McDermid: "Software Safety: Where is the evidence?"

- Bring the Evidence!!
- What Evidence????
- Software meets its safety requirements
 - 1. Inspection
 - 2. Testing
 - 3. Formal Verification

Mats Heimdahl, CASCON

UNIVERSITY OF MINNESOTA

What About Testing??

- Statistical Testing
 - Does not work
 - Butler and Finelli 20 years ago
 - R. W. Butler and G. B. Finelli. "The Infeasibility of Quantifying the Reliability of Life-Critical Real Time Software"

- Engineering Judgment
 - Assisted by coverage measures

Mats Heimdahl, CASCON 20

Not objective!!!

- Coverage Criteria
 - Does not work (yet)
 - As will be shown

UNIVERSITY OF MINNESOTA

MCDC as Intended in DO-178B

MCDC with Automation

MCDC Effectiveness is Poor

Except When it is Not

Effect of Program Structure of # Faults Found (MCDC)

Oracle	IV			Outputs Only		
Inline Level	NonInlined	Inlined	Rel. Imp.	NonInlined	Inlined	Rel. Imp.
DWM_1	79.9%	87.9%	10.0%	69.1%	82.5%	19.4 %
DWM_2	63.7%	86.1%	35.2%	56%	84.6%	51.8%
DWM_3	5.7%	90.6%	1489%	1.6%	90.6%	5940%
Latctl_Batch	69.3%	86.5%	24.8%	60.1%	79.2%	32.9%
Vertmax_Batch	76.7%	85.5%	11.5%	75.9%	84.7%	11.6%
WBS	77.3%	77.4%	0.1%	55.4%	56.3%	1.6%
Sensor Voting	28.4%	33.3%	17.6%	25.9%	30.9%	19.3%

Table VI. Percentage of mutants caught by reduced inlined and non-inlined test suites.

Testing: We Do Not Know What We Are Doing Testing Artifacts - Relationships

Matt Staats, Michael W. Whalen, and Mats P.E. Heimdahl. Programs, Tests, and Oracles: The Foundations of Testing Revisited.

Mats Heimdahl, CASCON 201

UNIVERSITY OF MINNESOTA

What About Formal Verification?

- We can mathematically prove that our program satisfies the requirements
 - Requirement R is satisfied in model M
 - M models R: $M \vDash R$
 - Rarely the case
 - R is satisfied in M when M is running in the environment E

Mats Heimdahl, CASC

• $M \land E \models R$

University of Minnesota

Model Checking Process

Model Checking Process

What About Formal Verification?

- We can mathematically prove that our program satisfies the requirements
 - Requirement R is satisfied in model M
 - M models R: $M \models R$
 - Rarely the case
 - R is satisfied in M when M is running in the environment E

Mats Heimdahl, CASC

• $M \land E \vDash R$

UNIVERSITY OF MINNESOTA

Software Engineering Center

 $M''' \wedge E''' \vDash R''$

 $M'' \wedge E'' \vDash R'$

 $M' \wedge E' \vDash R'$

 $M \wedge E \models R'$

 $M \wedge E \models R$

How we **Will** Develop Software (in theory)

24

Modeling Frenzy

Inappropriate Evidence

- Even perfect tools used inappropriately will harm you
 - Testing tools to generate inappropriate and/or useless tests
 - Verification with inappropriate abstractions, simplifications, and assumptions
- Loss of collateral validation and verification
 - Much validation and verification takes place by engineers working hard
 - How much? Nobody knows...

Mats Heimdahl, CASCO

University of Minnesota

So, What Do We Do?

- Back to basic system safety engineering!!!
 - Design hazards out of your systems
- Automation key to productivity and dependability
 - I am a big supporter of tools and automation
 - There is still a long way to go
 - Improper tool use could be catastrophic
- Fundamental testing research needed
 - Robust test adequacy metrics
 - Understand relationships between development artifacts

Mats Heimdahl, CASCON 20

- Verification support
 - IVE: Integrated Verification Environments
 - Good training materials
 - Verification methodologies

University of Minnesota

Infusion Pump

• When the stop button is pressed, the current pump stroke shall be completed prior to stopping the pump.

Mats Heimdahl, CASCON

• We could verify in our software, or...

UNIVERSITY OF MINNESOTA

So, What Do We Do?

- Back to basic system safety engineering!!!
 - Design hazards out of your systems
- Automation key to productivity and dependability
 - I am a big supporter of tools and automation
 - There is still a long way to go
 - Improper tool use could be catastrophic
- Fundamental testing research needed
 - Robust test adequacy metrics
 - Understand relationships between development artifacts

Mats Heimdahl, CASCON 20

- Verification support
 - IVEs: Integrated Verification Environments
 - Good training materials
 - Verification methodologies

University of Minnesota

Discussion

