
Automated Deductive Translation of
Guardol Programs and Specifications

into SMT-Provable Properties

Konrad Slind
Trusted Systems Group

Rockwell Collins Advanced Technology Center

May 8, 2013

Collaborators

• Rockwell Collins: David Hardin, Andrew Gacek
• U. Minnesota: Mike Whalen, Tuan-Hung Pham

Program Verification with SMT

People want to tap the power of SMT systems for program
verification.

How to do this?

Assumption. The semantics of the programming language
provides the basis for reasoning about individual programs.

Problem.
SMT systems don’t understand semantics, they only
understand the mathematical theories they support.

The Semantics Triad

Semantics-based program verification needs a translation
between semantics and math.

• Axiomatic semantics (VC generation)
• Operational semantics (Decompilation into logic)
• Denotational semantics (Domain theory)

Other approaches

• Weakest-precondition semantics
• ACL2 (denotational semantics without tears)

Another Problem

• SMT doesn’t understand recursion
• Ability to iterate leads to undecidability
• But lots of programs use loop structures or explicit

recursion

There has been recent work on automating aspects of such
induction proofs

Our Research

Our application area demands both a high level of assurance
and a high level of automation

We have taken a two-pronged approach:
1. Express the operational semantics of our programming

language in higher order logic and use decompilation to
map programs to functional form

2. Raise the level of SMT proof to formulas incorporating a
class of catamorphisms over algebraic datatypes

Application area: Guards

A guard mediates information sharing between security
domains according to a specified policy.

High Security Network
Internet /

Low Security Network
Guard

Application

Trusted Untrusted

Infiltration

Exfiltration

Literally a box on a wire, in many cases.

Guard technology at Rockwell Collins

• Turnstile (2007)
• based on AAMP7 microprocessor
• rack size
• on UCDMO Baseline List

Guard technology at Rockwell Collins

• MicroTurnstile (2010)
• used to guard USB comms in soldier systems
• also AAMP7 based
• size of a stick of gum

Guard behaviors

Typical guard operations on a message stream:
• read field values in a message
• change fields in a message
• transform message by adding new fields
• drop fields from a message
• construct audit messages
• remove entire message from stream

Guard messages

Guards have traditionally been applied to fixed-size messages
in low-level formats. These continue to be important.

HOWEVER

Guard functionality for for tree-structured data of arbitrary size
(e.g., email, XML) is increasingly needed.

Note that sanitizers for web browsers are also a kind of guard,
applied to strings.

Guard properties

General properties:

• live : always terminates on every message
• total : never crashes because of a fault arising from

processing a message

There are also guard-specific properties, e.g., no dirty word
gets past a dirty-word filter.

Guardol

We have designed and developed Guardol, a domain-specific
language for guards.

Features:

• Automatic generation of implementations and formal
analysis artifacts

• Integrated and highly automated formal analysis
• Ability to incorporate existing or mandated functionality
• Support for a wide variety of guard platforms

Guardol language summary

Guardol is designed to be a fairly simple language with cutting
edge verification support.

• standard base types
• arrays, records
• standard imperative programming constructs
• ML style datatypes and pattern-matching
• declarations of external functionality
• a specification construct
• simple package system

Example: GMTI message format

type GMTI_Pkt =
[version : char[2], -- 2 ASCII chars
size: uint32, -- 4 bytes; includes 32-byte header
nationality : char[2], -- 2 ASCII chars
classification : uint8, -- 1 byte field
classification_sys : char[2], -- 2 ASCII chars
security_code : uint16, -- 2 bytes
exercise_id : uint8, -- 1 byte
platform_id : char[10], -- 10 ASCII chars
mission_id : uint32, -- 4 bytes
job_id : uint32, -- 4 bytes
-- mission segment-------------------------
mission_seg : uint8, -- 1 byte
mission_seg_size : uint32 -- 4 bytes
-- wire_data : char [160]
] ;

GMTI Utility

function arrcpy(dest : inout char[dest_len],
src : in uint8[src_len],
src_offset : in uint,
n : in uint) =

{
if n=0 or n > dest_len or src_offset + n > src_len
then skip;
else

for (i:uint = 0; i<n; i++)
{

dest[i] := chr(src[src_offset + i]);
}

}

GMTI guard
function guard(pkt: in GMTI_Pkt) returns result: uint32 =
{

result := 0;

if (pkt.classification != 5)
then result := result | (1 << 3);
else skip;

if not(pkt.classification_sys[0] = ’#U’ and
pkt.classification_sys[1] = ’#S’)

then result := result | (1 << 4);
else skip;

if ((pkt.security_code & 0xe010) != 0xe000)
then result := result | (1 << 5);
else skip;

if (not((pkt.exercise_id = 128) or (pkt.exercise_id = 129)))
then result := result | (1 << 6);
else skip;

... <elided> ...
}

Example: Red-Black trees

Functional programming (nothing to do with guards)

type Color = { Red | Black } ;

type RBTree =
{ Leaf
| Node : [color:Color,

left:RBTree, elem:int, right:RBTree]
} ;

Red-Black trees: Insertion

function ins(k:in int, T1:in RBTree) returns T2:RBTree =
{

match T1
{ RBTree’Leaf =>

T2 := RBTree’Node
[color : ’Red,
left:’Leaf, elem:k, right:’Leaf];

RBTree’Node n =>
if k < n.elem then
T2 := balance(n.color, ins(k, n.left), n.elem, n.right);

else if k = n.elem then
T2 := T1;

else
T2 := balance(n.color, n.left, n.elem, ins(k, n.right));

}
}

Red-Black trees: Insertion

function insert(Key: in int, T1 : in RBTree) returns T2 : RBTree =
{

T2 := ins(Key, T1);
match T2
{ RBTree’Leaf => skip;
RBTree’Node n =>

T2 := RBTree’Node
[color : ’Black,
left : n.left,
elem : n.elem,
right : n.right] ;

}
}

No Two Reds

The children of a red node are both black.

function NoTwoReds(Tree: in RBTree) returns result: bool =
{

match Tree
{
RBTree’Leaf => result := true;
RBTree’Node n =>
result := NoTwoReds(n.left) and NoTwoReds(n.right)

and
((n.color = ’Black)
or (colorOf(n.left) = ’Black and

colorOf(n.right) = ’Black));
}

}

Red Property

Properties are stated with the specification construct and the
check statement.

spec Red_Property = {
var T1 : RBTree;

T2 : RBTree;
i : int;

in
if NoTwoReds(T1) then
{
T2 := insert(i,T1);
check NoTwoReds(T2);
}
else skip;

}

Note: no assertions, loop invariants, etc. in code.

What Guardol doesn’t have

1. Infinite loops
• A guard should always complete its task.

2. Pointers
• Pointers complicate reasoning. Guardol provides automatic

memory management for unbounded tree-shaped
structures when generating code.

3. I/O
• Guardol is aimed at just the guard, not its computational

context, i.e., how data gets to it, or how its output is dealt
with.

The Guardol System

IDE HOL SMT

Ada

parse; edit

formalize

program

generate

code

generate

goals

Verification

If the user chooses to verify Guardol programs, HOL4 and
RADA become involved.

• HOL4 is an implementation of higher order logic. It is
well-suited to give semantics to programming languages.

• RADA is a SMT-based system for reasoning about
catamorphisms

HOL is used as a semantical conduit to RADA

Verification path

⌧1, . . . , ⌧j

p1, . . . , pk

s1, . . . , s`

⌧1, . . . , ⌧j

p1, . . . ,pk
s1, . . . , s`

f1, . . . , fk
g1, . . . , g`

RADA

formalize

program

decompile

generate

RADA

Semantics notes

• HOL types directly represent Guardol types
• Extensibility of HOL type system models declaration of

Guardol types
• Guardol statements are deeply embedded but expressions

are not
• Based on SIMPL from Norbert Schirmer’s PhD work

Guardol operational semantics

The operational semantics of Guardol is given as an inductively
defined judgement saying how statements alter the program
state. The formula:

BIG � prog (Normal s1) (Normal s2)

says “evaluation of program prog beginning in state s1
terminates and results in state s2”.

• A big-step semantics
• We also have small-step semantics and equivalence proof
• � is an environment binding procedure names to procedure

bodies

Footprint functions

A footprint function models the effect of a piece of code on the
program state.

We synthesize a footprint function for every procedure and
specification declaration and make a HOL definition for it.

Recursive procedures result in definition of recursive functions.

(Point of failure when termination is not proved automatically!)

Decompilation into logic

A decompilation theorem

` 8s1 s2. 8x1 . . . xk

.
s1.proc.v1 = x1 ^ . . . ^ s1.proc.v

k

= x

k

^
BIG � code (Normal s1) (Normal s2)
)
let (o1, ..., on

) = fn (x1, . . . , xk

)
in s2 = s1 with {y1 := o1, . . . , yn

:= o

n

}

relates evaluation of a program code with a footprint function
fn which captures the behavior of the program.

Original idea in Myreen UCambridge PhD (2008).

Proving decompilation theorems

Decompilation theorems allow reasoning about execution to be
replaced by reasoning about footprint functions.

• Automatically proved
• Essentially symbolic evaluation, using env. of

decompilation theorems to summarize behavior of
procedures

• Induction on recursion structure needed for recursive
procedures.

Translating specifications

Recall the Red property for RBTree. It is explicitly stated in
terms of evaluation.

spec Red_Property = {
var T1 : RBTree;

T2 : RBTree;
i : int;

in
if NoTwoReds(T1) then
{
T2 := insert(i,T1);
check NoTwoReds(T2);

}
else skip;

}

Transformation

Decompiling the code in the specification yields, by HOL proof,
the following goal

NoTwoRedsFn(v2)) NoTwoRedsFn(insertFn(v1, v2))

The operational semantics is no longer present.

It has been melted away, but the connection with the original
notion of program execution is preserved.

Deciding Guardol Specifications

We want to automate much or all of the reasoning about
Guardol programs.

• In general impossible (Turing, Rice, etc)
• But, new decision procedures for functional programs over

recursive datatypes have recently emerged
• We have implemented one of them, originally due to Suter

and Kuncak (POPL 2010)
• The procedure dealts with catamorphisms mapping from

algebraic datatypes to decidable theories

Catamorphisms

A catamorphism on lists is a simple pattern of recursion in
which an operator

op : (↵ ! � ! �) ! ↵ list ! � ! �

is used to crunch the list down into a single value.

cata (+) [x1, . . . , xn

] 0 = x1 + · · ·+ x

n

+ 0

Catamorphisms are definable for all algebraic datatypes.

Catamorphism Example

NoTwoReds is a catamorphism on RBTree.

function NoTwoReds(Tree: in RBTree) returns result: bool =
{

match Tree
{
RBTree’Leaf => result := true;
RBTree’Node n =>
result := NoTwoReds(n.left) and NoTwoReds(n.right)

and
((n.color = ’Black)
or (colorOf(n.left) = ’Black and

colorOf(n.right) = ’Black));
}

}

A decision procedure

Suppose a catamorphism C is sufficiently surjective and it
reduces its arguments into a decidable theory.

Then formulas involving applications of C are also decidable.

Sufficient Surjectivity

Sufficient surjectivity is a semantic property.

Intuitively, a catamorphism is sufficiently surjective if the inverse
relation of the catamorphism has sufficiently large cardinality
when tree shapes are larger than some finite bound.

For example, the sum of a binary tree of numbers is s.s.
because for any number there are an infinite number of trees
summing to it.

Many common functions on trees are s.s.: e.g., abstracting to a
collection, size, height, min element, sortedness.

Further work

Whalen and Pham have further developed the theory behind
the decision procedure

• Extended the procedure to handle mutual recursion
• Fixed completeness bugs
• Proposed monotonic catamorphisms (better than s.s.)
• Established explicit bounds
• Investigated combination of monotonic catamorphisms

while preserving completeness

Paper in VSTTE 2013.

RADA architecture

The decision procedure has been implemented in the RADA
tool.

Is SAT (without
control condition)?

Is SAT (with
control condition)?

RADA
Source

RADA
Parser

Unrolling
Loop

SMT2
AST

Tool-specific
Emitter

SMT Solver
(Z3 or CVC4)

UNSAT

SAT
Yes

NoYes

No

RADA homepage

RADA can be obtained at

http://crisys.cs.umn.edu/rada

HOL meets RADA

Many properties of interest need to be proved by induction.

To orchestrate this, we have a proof skeleton in HOL4 that

• automatically picks a recursive function to induct on (as in
Boyer-Moore)

• applies the corresponding induction scheme (proved in
HOL)

• instantiates any ind. hyps. to remove quantifiers
• inserts previously proved specifications as lemmas

DEMO

Current and Future Work

• More accurate modelling of partial operations (array
access exceptions, divide by zero, ...)

• Termination deferral (based on Greve and Slind, ACL2
Workshop 2013)

• Expand SK to a wider class of recursions, e.g., real folds
• Translating SMT proofs
• Verifying binaries

Issue : dealing with failed proofs

Our proofs may fail for a variety of reasons
• Proof skeleton selects wrong induction scheme
• Resulting formulas not in decidable theory
• Co-domain restriction violated
• Property is not true

Finding a decent way to give feedback seems difficult

Summary

We have been developing a program generation and
verification system based on a formal operational semantics.

Bridging the gap between the semantics and an SMT solver is
achieved by

• decompilation into logic
• orchestrating the proof skeleton in higher order logic
• enhancing the SMT solver to deal with recursive functions

Bibliography

•
The Guardol Language and Verification System, Hardin,
Slind, Whalen, and Pham,TACAS 2012.

•
A DSL for Cross-Domain Security, Hardin,Slind,Whalen
and Pham,HILT 2012.

•
An Improved Unrolling-Based Decision Procedure for

Algebraic Data Types, Pham and Whalen,VSTTE 2013.

HILT 2103

Second High Integrity Language Technology Workshop.
Pittsburgh, PA. November 10-14.

http://www.sigada.org/conf/hilt2013/

THE END

