
Introduction Visualization Information Flow Prototype Analysis Tool Summary

Automated Security Analysis
Tool Support for Evaluating C Code

Joe Hurd, Louis Testa and Aaron Tomb

Galois, Inc.
{joe,louis,atomb}@galois.com

HCSS
May 19, 2009

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 1 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Talk Plan

1 Introduction

2 Visualization

3 Information Flow

4 Prototype Analysis Tool

5 Summary

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 2 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Project Goal

Scenario: An evaluator is handed 100k lines of C code and
given two months to perform a security evaluation.

Examples: OpenSSH, bftpd, ISC DHCP server.
The application seems to fulfill its functional requirements, but
how to ensure that there is no malicious behaviour or
vulnerabilities?

Project Goal: Develop a diagnostic tool for C code to
support security evaluators.

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 4 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Security Evaluations

Security evaluations generally focus on:

The attack surface (e.g., the interface to the user or network).
The critical data (e.g., crypto keys, database queries).

Typical Question: What are the possible effects of changes
at the attack surface on the critical data?

Answering this requires an understanding of how information
flows through the program.

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 5 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Information Flow and Security Properties

Many program security properties can be expressed in terms
of potential information flow between program variables.

Confidentiality:
√

Example: ensuring Bell-La Padula properties hold for cross
domain applications.
Look for flows from secret to public.

Integrity:
√

Example: ensuring that ‘tainted’ user data does not get stored
in fixed-length buffers or appear in SQL queries.
Look for flows from tainted to critical.

Availability: ×
No way to specify that a flow must happen.

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 6 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Information Flow Diagnostic Tool

Tight time constraints mean that evaluators often cannot look
at every line of the codebase.

A diagnostic tool supports faster exploration of information
flow properties, allowing the evaluator to look for anomalies.

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 7 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

ASA Project Vision

Goal: Develop a program analysis tool that evaluators
interact with to build a mental model of security-relevant
information flow.

Workflow:
1 The evaluator seeds the analysis by annotating some program

variables as sensitive data or dangerous user input.
2 The tool uses the annotations to find candidate insecure

information flows.
3 The evaluator examines the flows, and removes false positives

by providing additional annotations so that the tool can make
a more precise analysis.

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 8 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

ASA Project Status

Current Status: We have a research prototype tool
implementing the underlying information flow static analysis.

Static analysis techniques allow the tool to scale up to large
codebases.
Tested by applying to open source codebases to discover
integrity problems.

Next Step: Visualization of program information flow.

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 9 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Visualization Requirements

Visualization Goal: Help evaluators build a mental model of
how security-relevant information flows through the program.

Requirement: Information flows must be closely tied to the
source code of the program, since that is what evaluators are
looking at.

Requirement: The visualization of information flows must
help to build a consistent model, not present a new view for
every information flow.

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 11 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Visualizing Information Flow

A program information flow consists of many assignments
distributed across the codebase:

Tracking a long information flow across source code involves
much tedious opening, closing and searching of files.

“Evaluating software is like frying 1,000 eggs”

A different visualization solution is needed.

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 12 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Call Trees: A Different Point of View

A call tree is a representation of how the program will execute
when run:

When the program is executed the call tree is traversed in
depth first order.

Information flows forwards through call tree nodes.

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 13 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Large Codebases Mean Large Call Trees

For large codebases, the call tree is unmanageably large.

Need fractal geometry to even display it on a screen:

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 14 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Fractal Call Trees: Why Not?

But Wait! The fractal call tree satisfied some of the
visualization requirements:

It presents a consistent model of information flow through the
program.
Navigation is intuitive: zoom in to different parts of the call
tree ‘map’.

But there are still problems remaining:

Fractal call trees don’t appear to use space efficiently.
How can they represent program information flows?

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 15 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Right-Angle Fractal Call Trees

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 16 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Labeling Fractal Call Trees

Fractal call trees can be labeled with function names, or the
variables used in the information flow:

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 17 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Program Information Flow

We have developed a prototype analysis tool for computing
information flow for C programs.

The algorithm is based on a theory of information flow
between storage locations (local/global variables and heap
cells).

This part of the talk gives an overview of the theory.

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 19 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Computing Information Flow

Computing precise information flow for a C program is a
challenging problem.

Information can flow through complex data structures.
Information transferring function pointers must be accurately
tracked.

However, computing an over-approximation of program
information flow is feasible.

Write x → y to mean information may flow from x to y .
It is safe to add extra flows if there is uncertainty.

Requirement: The evaluator is looking for bugs, not verifying
the program, so support tools need not be 100% sound or
complete to be useful.

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 20 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Conditional Information Flow

Consider the following code snippet:

if (condition) { x = secret; }
if (!condition) { public = x; }

Precision Improvement: Track the condition to see that
secret can never flow into public.

The analysis implements a calculus of conditional information
flow:

Γ ` x → y

“If the condition Γ holds, the value in the program variable x
flows into the program variable y .”

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 21 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Indirect Information Flow

There are two types of information flow:

Direct: y = x;
Indirect: if (x > 0) { y = 0; }

Indirect flows use the control path as a channel.

They are thus invisible to dynamic taint analysis (e.g., Perl).

How does the type of flow affect security properties?

Confidentiality: Look for both direct or indirect flows
secret→ public.
Integrity: Look for direct flows tainted→ critical.

Warning: Any direct flow can be artificially coded as an
indirect flow, so both kinds of flows should be checked if the
program might have malicious integrity bugs.

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 22 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Computing Indirect Information Flow

Suppose a direct information flow

Γ ` x → y

with program variable z in the condition Γ.

Then there is an indirect information flow from z to y .

Moreover, all indirect information flows must arise in this way
from some direct information flow.

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 23 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Analysis Tool Implementation

SATURN is a static analysis tool infrastructure developed by
Alex Aiken’s group at Stanford.

SATURN uses CIL to preprocess and simplify the input C code.

The ASA analysis tool is implemented as three separate
SATURN modules:

Variable clobbering analysis.
Information flow analysis.
Sensitivity analysis.

All SATURN analyses are compositional.

Function bodies are analyzed separately and stored in
summaries.
Summary information is consulted at call-sites.

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 25 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Toy Example

Code

int high, low;
void experiment(int cond) {
int tmp = 0;
if (cond) { tmp = high; }
low = tmp;

}

Shell

Entering flowprint: cil_sum_body("experiment",s_func)...
experiment.c:experiment: high flows into low (__arg0*)
*** Analysis finished successfully.

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 26 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

From Information Flow to Security Bugs

Application-specific sensitivity analysis.

Variables are annotated with their sensitivity levels by the user.
Calculate information flow for the main function.
Check there are no flows that violate the security policy (e.g.,
high to low).

Validating input data.

Format string bugs, SQL injection attacks.
Annotate input data with high, critical function arguments
with low.
Ensure all flows from high to low go through validation
functions.

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 27 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Benchmarks

The tool scales up to analyze large open source codebases:

Program Version Lines Func’s Security Analysis
bftpd 1.6 4,229 473 Format string
Neon 0.24.4 13,324 403 Format string
cfengine 1.5.4 36,648 448 Format string
ISC DHCP 3.0.1rc3 75,455 1,237 Format string
OpenSSH 4.7p1 52,399 1,292 Sensitivity

Known format string bugs found in several open source
benchmarks, including FTP and DHCP daemons.

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 28 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Case Study: The OpenSSH library

52,339 lines of C code, in 1,292 functions.

Set the sensitivity of created keys to high, and parameters of
functions that write to disk to low.

Should discover an information flow violating confidentiality in
the code for generating a new key.

Sensitivity analysis completes in 9 hours.

Except: 30 functions hit the 300 second timeout.

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 29 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Limitations

Limitations inherited from the SATURN infrastructure:

SATURN sometimes loses track of the effect of function calls
on local data.
Writing outside array bounds can create hidden information
flows.

The conditions of information flows can become large.

Some programming language constructs are inherently hard to
analyze:

Arrays.
Heap shape.

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 30 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Exploding Conditions

Exact information flow conditions can become large during
the analysis.

Pathological cases where the exact condition is exponentially
larger than the program.

Instead of storing the exact condition E , the analysis tool
stores two conditions (A, B), satisfying

A =⇒ E ∧ E =⇒ B

Instead of using E , the analysis uses either A or B (whichever
is conservative).

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 31 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Arrays Considered Harmful

Consider the following code snippet:

a[i] = secret;
public = a[j];

Array indexing makes information flow dependent on integer
equations.

Approximation: Treat entire array as a single variable, but
switch off clobbering.

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 32 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Future Plans: Short Term

Develop a simple annotation language.

Must cover common categories of data (e.g., user input,
sensitive data, public output, declassifying function).
Pre-annotate the interface to the C standard library, allowing
more to be done with fewer evaluator annotations.

Implement a robust information flow analysis tool.

Add conditions sparingly, to make the analysis more precise.

Implement information flow visualization.

Make it easy to see whether there are missing annotations,
such as declassifying function.

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 34 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Future Plans: Longer Term

Information flow specifications.

Derive C program specifications from higher-level security
policies (Lobster).

Extend the automatic analysis.

Heap shape (SmallFoot).
Information flow through C modules.
Quantitative information flow.

Assurance.

CEGAR model checker connection (blast).
Theorem prover connection (ACL2).

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 35 / 36

Introduction Visualization Information Flow Prototype Analysis Tool Summary

Summary

A good support tool is like an MRI scanner: the user drives;
and the automation keeps track of the details.

Information flow static analysis tools can scale up to find real
security bugs in widely used software.

The design is not yet set in stone—feedback welcome!

joe@galois.com

Joe Hurd, Louis Testa and Aaron Tomb Automated Security Analysis 36 / 36

	Introduction
	Visualization
	Information Flow
	Prototype Analysis Tool
	Summary

