
Baiting Inside Attackers Using Decoy

Documents

Brian M. Bowen, Shlomo Hershkop, Angelos D. Keromytis, Salvatore J. Stolfo

Department of Computer Science Columbia University

Abstract. The insider threat remains one of the most vexing problems
in computer security. A number of approaches have been proposed to
detect nefarious insider actions including user modeling and profiling
techniques, policy and access enforcement techniques, and misuse de-
tection. In this work we propose trap-based defense mechanisms and a
deployment platform for addressing the problem of insiders attempting
to exfiltrate and use sensitive information. The goal is to confuse and
confound an adversary requiring more e↵ort to identify real information
from bogus information and provide a means of detecting when an at-
tempt to exploit sensitive information has occurred. “Decoy Documents”
are automatically generated and stored on a file system by the D3 System
with the aim of enticing a malicious user. We introduce and formalize a
number of properties of decoys as a guide to design trap-based defenses
to increase the likelihood of detecting an insider attack. The decoy doc-
uments contain several di↵erent types of bogus credentials that when
used, trigger an alert. We also embed “stealthy beacons” inside the doc-
uments that cause a signal to be emitted to a server indicating when and
where the particular decoy was opened. We evaluate decoy documents
on honeypots penetrated by attackers demonstrating the feasibility of
the method.

1 Introduction

Much research in computer security has focused on the means of preventing
unauthorized and illegitimate access to systems and information. Unfortunately,
the most damaging malicious activity is the result of internal misuse within an
organization, perhaps since far less attention has been focused inward. Despite
classic internal operating system security mechanisms and the body of work
on formal specification of security and access control policies, including Bell-
LaPadula [1] and the Clark-Wilson models [4], we still have an extensive insider
attack problem. Indeed in many cases, formal security policies are incomplete
and implicit or they are purposely ignored in order to get business goals ac-
complished. There seems to be little technology available to address the insider
threat problem.

Insider attack has overtaken viruses and worm attacks as the most reported
security incident according to a report from the US Computer Security Institute
(CSI) [19]. The annual Computer Crime and Security Survey for 2007 surveyed



2 Authors Suppressed Due to Excessive Length

494 security personnel members from US corporations and government agencies,
finding that insider incidents were cited by 59 percent of respondents, while only
52 percent said they had encountered a conventional virus in the previous year.
The state-of-the-art seems to be still driven by forensics analysis after an attack,
rather than technologies that prevent, detect, and deter insider attack.

We define insider threats by di↵erentiating between Masqueraders (attack-
ers who impersonate another inside user) and Traitors (an inside attacker using
their own legitimate credentials). One possible solution for masquerade detection
involves anomaly detection [27]. In this approach, users actions are profiled to
form a baseline of normal behavior. Subsequent monitoring for abnormal behav-
iors that exhibit large deviations from this baseline [16] signal a potential insider
attack. The common strategy to prevent inside attacks involves policy-based ac-
cess control techniques to limit the scope of systems and information an insider is
authorized to use, and hence, limit the damage the organization may incur when
an insider goes awry. Prevention techniques may not always succeed, and thus,
monitoring and detection techniques are needed when prevention fails. In this
paper, we are focused on di↵erent techniques aimed at detecting masqueraders
and traitors.

We note that some external attackers can become insiders when an outsider
attains internal network access. Many attacks use spyware and rootkits [3], which
give outsiders internal access. Such software can easily be installed on systems
from physical or digital media (e.g., email, downloads) and allow an attacker
administrator or “root” access on a machine along with a means to gather sen-
sitive data. Rootkits have the ability to conceal themselves and elude detection,
especially when the rootkit is previously unknown, as is true in zero-day attacks
[8]. An external attacker that manages to install rootkits internally in e↵ect
becomes an insider, thereby multiplying the ability to inflict harm. Although
the techniques described in this paper may have utility for these cases, in this
paper our primary focus is on human insiders attempting to exfiltrate sensitive
information. By exfiltration we mean unauthorized copying and transmission of
information by any means.

The insider attack defense system described in this paper is of an o↵ensive
nature, intended to confuse and deceive a traitor by leveraging uncertainty, to
reduce the knowledge they ordinarily have of the systems and data they might
be authorized to use. This work considers methods to detect insider actions
against enterprise systems as well as individual hosts and laptops. We introduce
a deception system to distribute potentially large amounts of decoy information
with the aim to detect nefarious acts as well as to increase the workload of
an attacker to identify real information from bogus information, rather than
providing unfettered access as broadly exists today. We developed a system to
generate and place decoy documents within a file system. Our system generates
decoy documents containing decoy credentials that are monitored (e.g., Gmail
credential monitoring) for misuse and stealthily embedded beacons that signal
an alert when the document is opened.



Baiting Inside Attackers Using Decoy Documents 3

To achieve the goal of wide spread deception we must consider methods to
trap a wide variety of potential insiders with varying levels of sophistication.
Toward this goal, we developed a proof-of-concept system we call D3, the Decoy
Document Distributor system. Samples of D3 generated documents are presented
in the Appendix. The contributions of this paper include:

• A novel set of generally applicable properties are proposed to guide the design
and deployment of decoys and maximize the deception they induce for di↵erent
classes of insiders who vary by their level of knowledge and sophistication.

• A large-scale automated creation and management system for deploying de-
coys that can detect the presence (and, in some cases, “identity”) of malicious
insiders, or at least indicate malicious insider activity. This provides a means
for ordinary users to deploy honey documents without having to setup sophis-
ticated honeypot systems and sensors.

• An o↵ensive trap-based defense system is proposed to detect masqueraders and
traitors, and to flood attackers with bogus exfiltrated information that they
must analyze in order to find real information of value. Hence, our long term
goal is to flood the miscreant marketplace with bogus information devaluing
their quarry.

• A design of decoy information that combines a number of methods and moni-
tors, both internal and external, to detect insider exploitation using a common
and ubiquitous set of baited targets, ordinary looking documents.
1. A watermark is embedded in the binary format of the document file to

detect when the decoy is loaded in memory, or egressed in the open over a
network.

2. A “beacon” is embedded in the decoy document that signals a remote web
site upon opening of the document indicating the malfeasance of an insider
illicitly reading bait information.

3. If these methods fail to detect an insider attack or an exfiltration of baited
documents, the content of the documents contain bait and decoy information
that is monitored as well. Bogus logins at multiple organizations as well as
bogus and realistic bank information is monitored by external means.

• An easy to use system to broadly deploy decoys to ordinary users who are
alerted by email when a decoy has been touched on their laptops and personal
computers; no such system presently exists.

The reader is encouraged to visit the Decoy Document Distribution (D3) web
site to evaluate our technology developed to date at: http://www.cs.columbia.
edu/ids/RUU/Dcubed

1.

2 Related Work

The use of deception, or decoys, plays a valuable role in the protection of systems,
networks, and information. The first use of decoys (i.e., in the cyber domain)
1 Some features are restricted for internal use only.



4 Authors Suppressed Due to Excessive Length

has been credited to Cli↵ Stoll [29, 23] and detailed in his novel “The Cuckoos
Egg” [24], where he provides a thorough account of his crusade to catch German
hackers breaking into Lawrence Berkeley Laboratory computer systems. Stoll’s
methods included the use of bogus networks, systems, and documents to gather
intelligence on the German attackers who were apparently seeking state secrets.
Among the many techniques waged, he crafted “bait” files, or in his case, bogus
classified documents that really contained non-sensitive government information
and attached “alarms” to them so that he would know if anyone accessed at them.
To Stoll’s credit, a German hacker was eventually caught and it was found that
he had been selling secrets to the KGB.

Honeypots are e↵ective tools for profiling attacker behavior. Honeypots are
considered to have low false positive rates since they are designed to capture
only malicious attackers, except for perhaps an occasional mistake by innocent
users. Spitzner described how honeypots can be useful for detecting insider at-
tack [22] and discusses the use of honeytokens [23] such as bogus medical records,
credit card numbers, and credentials. In a similar spirit, Webb et al. [26] showed
how honeypots can be useful for detecting spammers. In current systems, the
decoy/honeytoken creation is a laborious and manual process requiring large
amounts of administrator intervention. Our work extends these basic ideas to
an automated system of managing the creation and deployment of these honey-
tokens.

Yuill et al. [29] extend the notion of honeytokens with a “honeyfile system”
to support the creation of bait files, or as they define them, “honeyfiles.” The
honeyfile system is implemented as an enhancement to the Network File Server.
The system allows for any file within user file space to become a honeyfile through
the creation of a record associating a filename to userid. The honeyfile system
monitors all file access on the server and alerts users when honeyfiles have been
accessed. Their work does not focus on the content or automatic creation of files,
but they do elicit some of the challenges of creating deceptive files (with respect
to names) that we address in section 4.

In this paper, we introduce a set of properties of decoys to guide their design
and maximize the deception they induce for di↵erent classes of insiders who vary
by their level of knowledge and sophistication. To the best of our knowledge, the
synthesis of these properties is indeed novel a contribution. Bell and Whaley
[2] have described the structure of deception as a process of hiding the real and
showing showing the false. They introduce several methods of hiding that include
masking, repackaging, and dazzling, along with three methods of showing that
include mimicking, inventing, and decoying. Yuill et al. [28] expand upon this
work and characterize deceptive hiding in terms of how it defeats an adversary’s
discovery process. They describe an adversary’s discovery process as taking three
forms: direct observation, investigation based on evidence, and learning from
other people or agents. Their work o↵ers a process model for creating deceptive
hiding techniques based on how they defeat an adversary’s discovery process.

The decoy documents introduced in this paper utilize similar deception mech-
anisms as well as beacons to signal a remote detect and alert in real-time time



Baiting Inside Attackers Using Decoy Documents 5

when a decoy has been opened. Web bugs are a class of silent embedded tokens
which have been used to track usage habits of web or email users [17]. Unfor-
tunately, they have been most closely associated with unscrupulous operators,
such as spammers, virus writers, and spyware authors who have used them to
violate users privacy. Typically they will be embedded in the HTML portion of
an email message as a non-visible white on white image, but they have also been
demonstrated in other forms such as Microsoft Word, Excel, and PowerPoint
documents [20]. When rendered as HTML, a web bug triggers a server update
which allows the sender to note when and where the web bug was viewed. Ani-
mated images allow the senders to monitor how long the message was displayed.
The web bugs operate without alerting the user of the tracking mechanisms. The
advantage for legitimate advertisers is that this allows them to monitor adver-
tisement e↵ectiveness, while privacy advocates worry that this technology can
be misused to spy on users’ habits. Our work leverages the same ideas, but ex-
tends them to other document classes and is more sophisticated in the methods
used to draw attention. In addition, our targets are insiders who should have no
expectation of privacy on a system they violate.

3 Threat Model - Level of Sophistication of the Attacker

The insider seeks to identify and avoid the decoys and abscond with “real”
information. We broadly define four monotonically increasing levels of insider
sophistication and capability. Some will have tools available to assist in deciding
what is a decoy and what is real. Others will only have their own observations
and thoughts.

– Low: Direct observation is the only tool available. The adversary largely de-
pends on what can be gleaned from a first glance. We strive to defeat this level
of adversary with our beacon documents, even though decoys with embedded
beacons may be distinguished with more advanced tools.

– Medium: A more thorough investigation can be performed by the insider;
decisions based on other, possibly outside evidence, can be made. For exam-
ple, if a decoy document contains a decoy account credential for a particular
identity, an adversary may verify that the particular identity is real or not by
querying an external system (such as www.whitepages.com). Such adversaries
will require stronger decoy information possibly corroborated by other sources
of evidence.

– High: Access to the most sophisticated tools are available to the attacker (e.g.,
super computers, other informed people who have organizational information).
The notion of the “Perfect Decoy” described in the next section may be the
only indiscernible decoy by an adversary of such caliber.

– Highly Privileged: Probably the most dangerous of all is the privileged and
highly sophisticated user. Such attackers might even be aware that the system
is baited and will employ sophisticated tools to try to analyze, disable, and
avoid decoys entirely. As an example of how defeating this level of threat



6 Authors Suppressed Due to Excessive Length

might be possible, consider the analogy with someone who knows encryption
is used (and which encryption algorithm is used), but still cannot break the
system because they do not have knowledge of an easy-to-change operational
parameter (the key). Likewise, just because someone knows that decoys are
used in the system does not mean they should be able to identify them. This is
the principal– coming up with a scheme to satisfy it remains an open problem.

4 Generating and Distributing Bait

In order to create decoys to bait various levels of insiders, one must understand
the core properties of a decoy that will successfully bait an insider.

4.1 Decoy Properties

We enumerate various properties and means of measuring these properties that
are associated with decoy documents to ensure their use will be likely to snare
an inside attacker. We introduce the following notation for these definitions.

Believable2: Capable of eliciting belief or trust; capable of being
believed; appearing true; seeming to be true or authentic.

A good decoy should make it di�cult for an adversary to discern whether
they are looking at an authentic document from a legitimate source or if they
are indeed looking at a decoy. We conjecture that believability of any particular
decoy can be measured by adversary’s failure to discern one from the other. We
formalize this by defining a decoy believability experiment. The experiment is
defined for the document space M with the set of decoys D such that D ✓ M
and M �D is the set of authentic documents.

The Decoy Believability Experiment: Expbelieve
A,D,M

• For any d 2 D, choose two documents m0, m1 2 M such that m0 = d or
m1 = d, and m0 6= m1; that is, one is a decoy we wish to measure the
believability of and the second is chosen at random from the set of authentic
documents.

• Adversary A obtains m0, m1 and attempts to choose m̂ 2 {m0, m1} such that
m̂ 6= d, using only information intrinsic to m0, m1.

• The output of the experiment is 1 if m̂ 6= d and 0 otherwise.

For concreteness, we build upon the definition of “Perfect Secrecy” proposed in
the cryptography community [12] and define a “perfect decoy” when:

Pr[Expbelieve
A,D,M = 1] = 1/2

2 For clarity, each property is provided with its definition gleaned from online dictio-
nary sources.



Baiting Inside Attackers Using Decoy Documents 7

The decoy is chosen in a believability experiment with a probability of 1/2 (the
outcome that would be achieved if the volunteer decided completely at random).
That is, a perfect decoy is one that is completely indistinguishable from one that
is not. A benefit of this definition is that the challenge of showing a decoy to be
believable, or not, reduces to the problem of creating a “distinguisher” that can
decide with probability better than 1/2.

In practice, the construction of a “perfect decoy” might be unachievable,
especially through automatic means, but the notion remains important as it
provides a goal to strive for in our design and implementation of systems. For
many threat models, it might su�ce to have less than perfect believable decoys.
For our proof-of-concept system described below, we generate receipts and tax
documents, and other common form-based documents with decoy credentials,
realistic names, addresses and logins, all information that is familiar to all users.

We note that the believable property of a decoy may be less important than
other properties defined below since the attacker may have to open the decoy
in order to decide whether the document is real or not. The act of opening
the document may be all that we need to trap the insider, irrespective of the
believability of its content. Hence, enticing an attacker to open a document, say
one with a very interesting name, may be a more e↵ective strategy to detect an
inside attack than producing a decoy document with believable content.

Enticing: highly attractive and able to arouse hope or desire; “an
alluring prospect”; lure.

Herein lies the issue of how does one measure the extent to which a de-
coy arouses desires, how well is it a lure? One obvious way is to create decoys
containing information with monetary value, such as passwords or credit card
numbers that have black market value [14, 25]. However, enticement depends
upon the attacker’s intent or preference. We define enticing documents in terms
of the likelihood of an adversary’s preference; enticing decoys are those decoys
that are chosen with the same likelihood. More formally, for the document space
M , let P be the set of documents of an adversary’s A preference, where P ✓ M .
For some value ✏ such that ✏ > 1/|M |, an enticing document is defined by the
probability

Pr[m ! M |m 2 P ] > ✏

where m ! M denotes m is chosen from M. An enticing decoy is then defined
for the set of decoys D, where D ✓ M , such that

Pr[m ! M |m 2 P ] = Pr[d ! M |d 2 D]

We posit that by defining several general categories of “things” that are of
“attacker interest”, one may compose decoys using terms or words that corre-
spond to desires of the attacker that are overwhelmingly enticing. For example,
if the attacker desires money, any document that mentions or describes informa-
tion that provides access to money should be highly enticing. We believe we can
measure frequently occurring (search) terms associated with major categories of



8 Authors Suppressed Due to Excessive Length

interest (e.g., words or terms drawn from finance, medical information, intellec-
tual property) and use these as the constituent words in decoy documents. To
measure the e↵ectiveness of this generative strategy, it should be possible to ex-
ecute content searches and count the number of times decoys appear in the top
10 list of displayed documents. This is a reasonable approach also, to measuring
how conspicuous, defined below, the decoys become based upon the attacker’s
searches associated with their interest and intent.

Conspicuous: easily visible; easily or clearly visible; obvious to the
eye or mind; Attracting attention.

A conspicuous decoy should be easily found or observed. Conspicuous is
defined similar to enticing, but conspicuous documents are found because they
are easily observed, whereas enticing documents are chosen because they are of
interest to an attacker. For the document space M , let V be the set of documents
defined by the minimum number of user actions required to enable their view.
We use a subscript to denote the number of user actions required to view some
set of documents. For example, documents that are in view at logon or on the
desktop (requiring zero user actions) are labeled V0, those requiring one user
action are V1, etc. We define a “view”, Vi of a set of documents as a function of
a number of user actions applied to a prior view, Vi�1, hence

Vi = Action(Vi�1) where Vj 6= Vi, j < i

An “Action” may be any command or function that displays files and documents,
such as ‘ls’, ‘dir’, ‘search.’ For some value ✏ such that ✏ > 0, a conspicuous
document, d, is defined by the probability

nY

i=0

Pr[Vi] > ✏

where n is the minimum value where d 2 Vn. Note if d is on the desktop, V0,
Pr[V0] = 1 (i.e., the documents in full view are highly conspicuous).

When a user first logs in, a conspicuous decoy should either be in full view
on the desktop, or viewable after one (targeted) search action. One simple user
action is optimal for a highly conspicuous decoy. Thus, a measure of conspic-
uousness may be a count of the number of search actions needed, on average,
for a decoy to appear in full view. The decoy may be stored in the file system
anywhere if a simple content-based search locates it in one step. But, this search
act depends upon the query executed by the user. The query can either be a
location (e.g., search for a directory named “TAX” in which the decoy appears)
or a content query (e.g., using Google Desktop Search for documents containing
the word “TAX.”) In either case, if a decoy document appears after one such
search, it is conspicuous. Hence, we may define the set P as all such files that can
be found in some number of steps. But, this depends upon what search terms the
attacker uses to query! If the decoy never appears because the attacker used the
wrong search terms, the decoy is not conspicuous. We posit that the property of



Baiting Inside Attackers Using Decoy Documents 9

enticing is likely the most important property, and a formal measure to evaluate
enticement will generate better decoys. In summary, an enticing decoy should
be conspicuous to be an e↵ective decoy trap.

Detectable; to discover or catch (a person) in the performance of
some act: to detect someone cheating.

Decoys must ensure an alert is generated if they are exploited. Formally, this
is defined for adversary A, document space M , and the set of decoys D such
that D ✓ M . We use AlertA,d = 1 to denote an alert for d 2 D. We say d is
detectable with probability ✏ when

Pr[d ! M : AlertA,d = 1] � ✏

Ideally, ✏ should be 1.
We designed the decoy documents with several techniques to provide a good

chance of detecting the malfeasance of an inside attack in real-time.

• At time of application start-up, the decoy document emits a beacon alert to
a remote server.

• At the time of memory load, a host-sensor, such as an antivirus scanner, may
detect embedded tokens placed in a clandestine location of the document file
format.

• At the time of exfiltration, a NIDS such as Snort, or a stream event detection
system such as Cayuga [5] may be used to detect these embedded tokens
during the egress of the decoy document in network tra�c where possible.

• At time of information exploitation and/or credential misuse, monitoring of
decoy logins and other credentials embedded in the document content by exter-
nal systems will generate an alert that is correlated with the decoy document
in which the credential was placed.

This extensive set of monitors maximizes ✏, forcing the attacker to expend
considerable e↵ort to avoid detection, and hopefully will serve as a deterrent to
reduce internal malfeasance within organizations that deploy such a trap-based
defense. In the proof-of-concept implementation reported in this paper, we focus
our evaluation on the last item. We utilize monitors at our local IT systems, at
Gmail and at an external bank.

Variability: The range of possible outcomes of a given situation; the
quality of being subject to variation.

Attackers are humans with insider knowledge, even possibly with the knowl-
edge that decoys are liberally spread throughout an enterprise. Their task is
to identify the real documents from the potentially large cache of decoys. One
important property of the set of decoys is that they are not easily identifiable
due to some common invariant information they all share. A single search or
test function would thus easily distinguish the real from the fake. The decoys
thus must be highly varied. We define variable in terms of the likelihood of being



10 Authors Suppressed Due to Excessive Length

able to decide the believability of a decoy given any known decoy. Formally, we
define perfectly variable for document space M with the set of decoys D such
that D ✓ M where

Pr[d0 ! D : Expbelieve
A,D,M,d0 = 1] = 1/2

Observe that under this definition an adversary may have access to all N
previously generated decoys with the knowledge they are bogus, but still lack
the ability to discern the N+1st. From a statistical perspective, each decoy is
independent and identically distributed. For the case that an adversary can
determine the N+1st decoy only after observing the N prior decoys, we define
this as an N-strong Variant.

Clearly, a good decoy generator should produce an unbounded collection of
enticing, conspicuous, but distinct and variable documents. They are distinct
with respect to string content. If the same sentence appears in 100 decoys, one
would not consider such decoys with repetitive information as highly variable;
the common invariant sentence(s) can be used as a “signature” to find the decoys,
rendering them distinguishable (and clearly, less enticing).

Non-interference: Something that does not hinder, obstructs, or
impede.

Introducing decoys to an operational system has the potential to interfere

with normal operations in multiple ways. Of primary concern is that decoys
may pollute authentic data so that their legitimate usage becomes hindered
by corruption or as a result of confusion by legitimate users (i.e., they cannot
di↵erentiate real from fake). We define non-interference in terms of the likelihood
of legitimate users successfully accessing normal documents after decoys are
introduced. We use AccessU,m = 1 to denote the success of a legitimate user U
accessing a normal document m. More formally, for some value ✏, the document
space M , 8m 2 M we define

Pr[AccessU,m = 1] � ✏

on a system without decoys. Non-interference is then defined for the set of
decoys D such that D ✓ M and 8m 2 M we have

Pr[AccessU,m = 1] = Pr[AccessU,m = 1|D]

Although we seek to create decoys to ensnare an inside attacker, a legitimate
user whose data is the subject of an attacker must still be able to identify their
own real documents from the planted decoys. The more enticing or believable
a decoy document may be, the more likely it would be to lead the user to
confuse it with a legitimate document they were looking for. Our goal is to
increase believability, conspicuous, and enticingness while keeping interference
low; ideally a decoy should be completely non-interfering. The challenge is to
devise a simple and easy to use scheme for the user to easily di↵erentiate their



Baiting Inside Attackers Using Decoy Documents 11

own documents, and thus a measure of interference is then possible as a by-
product.

Di↵erentiable: to mark or show a di↵erence in; constitute a
di↵erence that distinguishes; to develop di↵erential characteristics
in; to cause di↵erentiation of in the course of development.

It is important that decoys be “obvious” to the legitimate user to avoid in-
terference, but “unobvious” to the insider stealing information. We define this in
terms of an inverted believability experiment, in which the adversary is replaced
by a legitimate user. We say a decoy is di↵erentiable if the legitimate user al-
ways succeeds. Formally, we state this for the document space M with the set
of decoys D such that D ✓ M where

Pr[Expbelieve
U,D,M = 1] = 1

How might we easily di↵erentiate a decoy for the legitimate user so that we
maintain “non-interference” with the user’s own actions and legitimate work?
The remote thief who exfiltrates all of a user’s files onto a remote hard drive may
be perplexed by having hundreds of decoys amidst a few real documents; the thief
should not be able to easily di↵erentiate between the two cases. If we store a
hundred decoys for each real document, the thief’s task is daunting; they would
need to test embedded information in the documents to decide what is real and
what is not, which should complicate their end goals. For clarity, decoys should
be easily di↵erentiable to the legitimate user, but not to the attacker without
significant e↵ort. Thus, the use of “beacons” or other embedded content in the
binary file format of a document, must be judiciously designed and deployed to
avoid making decoys trivially di↵erentiable for the attacker.

4.2 The Decoy Document Distributor (D3) System

The D3 web-based service generates and distributes decoy documents to regis-
tered users. The decoy properties guide the design of decoy templates in D3 that
are used to generate specific documents for download. The content of each decoy
document includes several types of “bait” information such as online banking lo-
gins provided by a collaborating financial institution3, login accounts for online
servers, and web based email accounts. In our deployment we used Columbia
University student accounts and Gmail email accounts as bait, but these can
be customized to any set of monitored credentials. These decoy credentials are
“bait” and are enticing targets for di↵erent types of adversaries [14, 13].

4.3 Decoy Document Design

The primary goal of the trap based defense is to detect malfeasance. Since no
system is foolproof, we propose that multiple overlapping signals be embedded in
3 By agreement, the institution request that its name be withheld.



12 Authors Suppressed Due to Excessive Length

the decoy documents to ensure detectability. Any alert generated by the multiple
decoys is an indicator that some insider activity has occurred. Since the attacker
may have varying levels of sophistication, a combination of traps are used in
decoy documents to increase the likelihood one will succeed in generating an
alert. A sophisticated attacker may, for example, disable the internal beacon,
or cut o↵ network connections avoiding communication, disable or kill local
host monitoring processes, or they may exfiltrate documents via a web-browser
without opening them locally. The documents are designed with several means
of detecting their misuse:

• embedded honeytokens, computer login accounts created that provide no ac-
cess to valuable resources, and that are monitored when (mis)used;

• embedded honeytoken banking login accounts specifically created and mon-
itored for this trap-based technology demonstration specifically to entice fi-
nancially motivated attackers;

• a network-level egress monitor that alerts whenever a marker, specially planted
in the decoy document, is detected (we are collaborating with Cornell to use
Cayuga [5] for this purpose. Presently Snort may be used as simple signature
detector as a proof-of-concept);

• a host-based monitor that alerts whenever a decoy document is “touched” in
the file system such as a copy operation;

• an embedded “beacon” alerts a remote server at a site at Columbia that we
call SONAR. The web site emits an email to the registered user who created
and downloaded the decoy document.

The implementation of features are described below.

Honeytokens This layer of defense is made up of “bait” information such as
online banking logins provided by a collaborating financial institution, credit
card numbers, login accounts for online servers, and web based email accounts
and is illustrated in Figure ??. The primary requirement for bait is that it
be detectable when (mis)used. For example, one form of bait that we use are
usernames and passwords for Gmail accounts. D3 is integrated with a variety
of services to enable monitoring of these credentials once they are deployed as
decoys. In the case of the Gmail accounts, custom scripts access mail.google.com

to parse the bait account pages, gathering account activity information. The
information includes the IP addresses for the previous 5 account accesses and the
time. If there is any activity from IP addresses other than D3’s monitor, an alert
is triggered with the time and IP of the o↵ending host. Alerts are also triggered
when the monitor cannot login to the bait account. In this case, we conclude that
the account password was stolen (unless monitoring resumes) and the password
changed unless other corroborating information (like a network outage) can be
used to convince otherwise. In addition, some of our accounts have password
monitors, allowing us to produce a seemingly unbounded collection of decoy
variants for individual usernames.

In the case of financially motivated bait, we are beginning to use real
credit card numbers in addition to banking login credentials. Many credit card



Baiting Inside Attackers Using Decoy Documents 13

providers o↵er “one-time-credit-card numbers” and other forms of Controlled
Payment Numbers [18], which enable the generation of multiple credit card num-
bers for a single account. In the case of PayPal, single use credit card numbers
can be generated with a predetermined balance. The D3 monitor is being inte-
grated with the PayPal APIs to automatically monitor the activity of the credit
card numbers deployed through D3. As is the case for all of the decoys, the
benefit of deployment through D3 is the automation, enabling their creation,
monitoring, and distribution en masse.

Beacon Implementation The highly sophisticated attacker will likely attempt
to di↵erentiate between a real document and a decoy by analyzing the binary file
format prior to opening a file. This necessitates a design where beacon code and
watermarks in decoy documents are hidden to avoid their easy identification.
The attacker would surely avoid the decoys if they could easily identify them by
a simple static test for an embedded beacon. The beacon code can be embedded
in documents in a number of ways and made to appear statistically equivalent
to its surrounding data using a blending technique called “spectrum shaping”
(see [21, 6]). Such obfuscation techniques are very hard to defeat [15].

Using common techniques developed for malware, beacons attempt to silently
contact a centralized server with a unique token embedded within the document
at creation time. The token is used to identify the decoy and document, the IP
address of the host accessing the decoy document. Depending on the particular
document type and the rendering environment used during viewing of the beacon
document, some additional data may be collected.

The first proof-of-concept beacons have been implemented in MS Word and
PDF and deployed through the D3 web site. In the case of the MS Word doc-
ument beacons, the examples rely on a stealthily embedded remote image that
is rendered when the document is opened. The request for the remote image is
a positive indication the document has been opened. In the case of PDF doc-
ument beacons, the signaling mechanism relies on the execution of Javascript
within the document. The D3 site includes a tutorial guiding the user on how
to generate, download, and enable the decoys’ silent communication on hosts.
It is important to point out that there are methods for disabling the beacon
mechanism. In Section 5.2, we provide an evaluation of beacon robustness.

Embedded Marker implementation Beacon documents contain embedded
markers that a host or network sensor may detect either when documents are
loaded in memory or transmitted in the clear. The markers are constructed as
a unique pattern of word tokens uniquely tied to the document creator. The
sequence of word tokens is embedded within the beacon document’s meta-data
area or reformated as comments within the document format structure. Both
locations are ideal for embedding markers since most rendering programs ig-
nore these parts of the document. The embedded markers can be used in Snort
signatures for detecting exfiltration.



14 Authors Suppressed Due to Excessive Length

5 Evaluation

5.1 Masquerade detection using Decoy Documents as Bait

We have defined the general properties that decoys should have and discussed
how we may measure these properties, but here we focus on the most important
property: detectability. Under ideal testing conditions, decoy e�cacy could be
shown through deployment on true operational systems either within an enter-
prise environment, or on personal computers, by the number of attacks they are
able to detect or thwart (they have a deterrence e↵ect). However, given rea-
sonable time limits, the infrequency of attacks within the insider threat model
makes this approach impractical within a university environment. As we men-
tioned we are now seeking a larger user population to study and measure decoy
generation over time.

Another approach to evaluation is a user study in which users are organized
and asked to evaluate decoys based on each of the key decoy properties men-
tioned earlier. We take human evaluation to be the gold standard of evaluation
since the human mind is the ultimate target of our decoys. That is, we wish to
show how well our decoys can induce deception on human test subjects. One of
the challenges of conducting a traditional user study lies in the logistics of ob-
taining volunteers. In our methodology, we attempt to reduce this challenge by
leveraging external attackers to serve as participants in our study on masquer-
ade detection. To do so, we “invite” attackers (or more accurately, bamboozle
them) into our study by attracting them with a set of vulnerable systems on the
university network, which also serve as our testing platform.

Our test platform is embedded within a honeynet [9]. It consists of sev-
eral virtual machines running Linux and configured with Sebek [10] to capture
attacker activities including commands and file references. In order to limit po-
tential damage from system compromise and still allow for testing, we configured
the honeynet to allow all incoming connections while restricting the number of
outgoing connections.

The virtual machine hosts within the honeynet were configured with accounts
and home directories for three decoy usernames. To make the environment as real
as possible, genuine data from personal accounts on other systems were loaded
into each of the home directories. We changed name references within the data
to reflect those of the appropriate decoy users. In total, our phony user accounts
contained 15 or more directories and 50-100 files. The hosts were then seeded
with several of D3’s decoy files using the decoy distributor utility. The decoy files
were generated to have conspicuous names such as “stolen passwords”, “credit
card”, “private data”, and “Gmail AccountInfo”, but were distributed within
the polluted home directories of the decoy accounts, making the environment as
real as possible.

To lure test subjects into the study, our initial approach was to use attackers
that attempt to gain internal access via password scanning. Password scanning
attacks are common on the university network, where attempts on a typical
machine are in the range of thousands per day. To enable attacker access, we



Baiting Inside Attackers Using Decoy Documents 15

conducted a short study to first determine the most common usernames and
passwords (excluding those for root and actual users) used in these attempts.
We created accounts with several of these usernames and passwords, to quickly
learn that this breed of attacker was not going to su�ce for our user study; their
sole purpose seemed confined to creating zombies for botnets. While this may
be a valid threat to study while evaluating decoys [7], allowing bots to operate
on the university network poses too much risk.

In our second and more aggressive approach, we narrowed our recruitment
e↵ort to web forums and IRC channels with the expectation and hope that we
would get fewer attacks involving botnets. In this approach, we selected several
high volume forums to solicit volunteers and posted variations of invitations with
messages that included hostnames, usernames, and passwords. The idea was to
provide just enough innocent-looking information from a novice to lure people
into our machines without providing direct evidence that we were conducting a
deception-based experiment. Note that we deliberately omit the names of the
forums used and the exact details of the messages, as this is an ongoing study.

While our methodology could, in theory, provide anyone with access to our
test platform, by selectively choosing the location of postings and contents post-
ings, we expected to recruit two primary classes of individuals:

• Legitimate and generally curious computer-savvy individuals. These users
have no interest in extending privileges in an unauthorized way, but partici-
pate in the study out of curiosity, as there is no other incentive.

• Unscrupulous opportunistic hackers who attempt to extend their network ac-
cess by whatever means a↵orded to them. These individuals are enticed by
our posting as they see our machines as low “hanging fruit” in their targeting
campaign.

In either case, we believe these individuals to be suitable candidates for our
study (with one caveat mentioned later). Both classes of individuals can be used
in measuring the enticement property of decoys. We measure this by examining
the behavior exhibited in file access, both with respect to the particular files a
user attempts to read and in the order in which the files are read. For example,
if all users consistently read the same file first, we know the file must indeed be
enticing.

In regards to indistinguishability of the decoys, we note that the content of
these decoys contains bait information in the form of monitored credentials on
real systems. Certainly, if our attackers take the time to use the decoy credentials,
there is an implication that they must also be believable. More importantly
though, if they use the credentials and we detect their use, we have also answered
the most important question of – can we detect the attacker? Note that the first
class of the individuals is by definition, not useful for this part of the study.
That is, attempting to use credentials found on our machines is clearly an illicit
activity, which they would not partake in. Unfortunately, we do not have a good
way of distinguishing the two classes, so we get slightly skewed results.



16 Authors Suppressed Due to Excessive Length

Over the span of the first week 4, our hosts netted 20 unique users, deter-
mined anecdotally by source IP address and reinforced by the unique behaviors
exhibited by each. The length of user sessions ranged from minutes to hours.
The users that spent hours were focused on activities that included writing code
and attempting to install other software, presumably with malicious intent. The
most common activities exhibited for users upon login included activities such as:
determining who else was on the machine, checking and deleting the command
history, and exploring the system (i.e., reading the most conspicuous files). We
note that in almost all cases, our decoys were among the first few files viewed
by users upon initial login (as noted, viewing the history file was also popular).
The most significant observations were made for 6 of the 20 unique users:

1. There were three attempts to use Gmail credentials that were contained in
a decoy document, which triggered an alert on SONAR.

2. One attacker changed the password on a bogus Gmail account, which also
triggered a SONAR alert.

3. There were at least two attempts to exfiltrate decoy files (with scp and sftp;
one file, named “stolenpasswords”, contained credentials to the university
systems.

4. There was one attempt to use the university credentials contained in the
“stolenpassword” file, which we were alerted to by the monitor that signaled
an alert to SONAR.

We take these results as evidence that D3/SONAR indeed has value as a de-
fense against masqueraders. While only 5 of the 20 users sounded an alarm on
SONAR, we emphasize that our methodology did include an unknown proportion
of benign users. Furthermore, the focus of study was on masquerade detection;
admittedly, we do not yet have a good way of evaluating our system on traitors,
but this will be the focus of future work.

One flaw in our evaluation methodology that was revealed during testing was
that we allowed users to make changes to the file system. We did this deliberately
to increase the realism of the environment in the experiments. The problem this
created was that it made decoy defense vulnerable to deletion (e.g., several of
our visitors executed wholesale deletion of files with “rm -rf *”) . This poses a
problem in our testing methodology, but not necessarily in practice. That is, the
act of deleting files is in itself a detectable behavior that would alert monitors
of suspicious behavior.

In this study, we omitted testing decoy documents with embedded beacons.
The honeypots set up to attract remote attackers were stripped down Linux
machines that had no installed applications necessary to open and render the
decoy documents. We believe the value of beacon documents to be self-evident.
We encourage the reader to visit and test the D3 site, and participate in our
planned longitudinal study. In the next section we describe tests of the beacon
implementation on multiple hosts.
4 Most attacks occurred within the first 8-hour period after posting.



Baiting Inside Attackers Using Decoy Documents 17

5.2 Beacon Implementation Tests

To test the robustness of the beacon implementations we tested them with the
most common configurations of operating systems and document viewers. To this
end, we contacted a random group of users across the Internet and sent them
each two types of beacon documents along with a request that they open them
as part of a benign experiment. The results of tests conducted on PDF and Word
beacons are presented in Table 1 and 2 below. These results are a representative
sample of real users across multiple hosts accessing the beacon documents. For
the most part the beacon technology works well on the windows platform while
not as well on Mac and Linux operating systems. The reason is that the default
PDF reader is not Adobe’s and does not execute Javascript embedded within the
documents. Similarly, Word document beacons do not work when applications
other than Microsoft Word (e.g., OpenO�ce or Google Docs) are used to open
them. We are currently researching ways to address these limitations and will
focus on them in future work.

Table 1. PDF Beacon Test Results

OS Application #Tests #Pings

Windows XP Adobe 6 6
Windows Vista Adobe 4 4

Mac OS Preview 1 0

Mac OS Adobe 1 1

Ubuntu Evince 1 0

Table 2. Word Beacon Test Results

OS Application #Tests #Pings

Windows XP Word 5 4
Windows XP GoogleDocs 1 0

Windows Vista Adobe 4 4
Mac OS Word 2 2

Linux OpenO�ce 1 0

6 Conclusions

Our work focuses on the study and creation of bait information with the aim
of exposing or thwarting the exploitation of exfiltrated information by malicious
insiders. As future work, we intend to explore how this approach might also be
applicable in detecting accidental violations of policy, as a means of warning
users and organizations about such violations. The benefit of using the pro-
posed decoy document system for this purpose is that it can potentially operate



18 Authors Suppressed Due to Excessive Length

without the privacy repercussions if a mistake is made; such a benefit di↵eren-
tiates the approach from traditional monitoring approaches. Another direction
to explore is how to improve the believability of decoys documents. We are
planning a series of user studies to help us determine how users treat di↵er-
ent attributes of a document in a specific context, such as whether an attacker
would find more believable a document purporting to contain tax information
that is encrypted/protected with a weak (predictable) passphrase, compared to
an unprotected version of the same document.

In conclusion, although the use of bait information and similar trap-based
defenses is well known, most of those e↵orts have focused either on artifacts
that are logically separate from the operational systems (e.g., honeypots [22])
or on low-level snippets of information created manually (e.g., fake database
records [23]). The D3 system is a scalable and automated trap-based defensive
system that forces attackers to expend considerable e↵ort to identify realistic
useful information from purposely planted bogus information intended to de-
ceive. Naturally, the probability of exposing a malicious insider with trap-based
defense tactics increases with the amount of decoy information that is gener-
ated and disseminated. D3 o↵ers the novel service of automatically creating and
managing decoy documents, enabling the throttling of bait based on the desired
protection level or cost (e.g., interference) one is willing to pay.

Acknowledgments

This material is based upon work supported in part by the US Department of
Homeland Security under Grant Award Number 60NANB1D0127 with the Insti-
tute for Information Infrastructure Protection (I3P), the Army Research O�ce
(ARO) Under Grant Award W911NF-06-1-0151 - 49626-CI, and the National
Science Foundation (NSF) under Grant CNS-07-14647. The I3P is managed by
Dartmouth College. The views and conclusions contained in this document are
those of the authors and should not be interpreted as necessarily representing the
o�cial policies, either expressed or implied, of the U.S. Department of Homeland
Security, the I3P, ARO, NSF, or Dartmouth College.

We give special thanks to the Sandia National Laboratories Doctorate Study
Program for supporting Brian Bowen and to Henner Mohr for his diligent e↵ort
and contributions to the development of the D3 website and decoy document
content.

References

1. Bell D. E. and LaPadula L. J., “Secure Computer Systems: Mathematical Founda-
tions,” MITRE Corporation, 1973.

2. Bell, J. and Whaley, B. Cheating and Deception, Transaction Publishers, New
Brunswick, NJ. 1982.



Baiting Inside Attackers Using Decoy Documents 19

3. Butler, J. and Sherri S., “Security: Spyware and Rootkits,” Login, Vol 29, No 6,
December 2004.

4. Clark, D. D. and Wilson, D. R., “A Comparison of Commercial and Military Com-
puter Security Policies,” IEEE Symposium on Security and Privacy, pp. 184-194,
1987.

5. Demers, A., Gehrke, J., Hong, M., Panda, B., Riedewald, M., Sharma, V., and
White, W., “Cayuga: A General Purpose Event Monitoring System,” CIDR, pp.
412-422, 2007.

6. Detristan, T., Ulenspiegel, T., Malcom Y., and Von Underduk, M. S. “Polymorphic
Shellcode Engine Using Spectrum Analysis,” Phrack 11, 61-9, 2003.

7. Friess, N., and Aycock, J.,“Black Market Botnets,” Department of Computer Sci-
ence, University of Calgary, TR 2007-873-25, July, 2007.

8. Hoang, M. “Handling Today’s Tough Security Threats,” Symantec Security Re-
sponse, 2006.

9. The Honeynet Project. http://www.honeynet.org
10. The Honeynet Project, “Know Your Enemy: Sebek, A Kernel based data capture

tool,” November, 2003.
11. Honeypot Mailing List, Security Focus.

http://www.securityfocus.com/archive/119

12. Katz, John and Yehuda L., Introduction to Modern Cryptography, Chapman and
Hall CRC Press, 2007.

13. Kravets, D., ”From Riches to Prison: Hackers Rig Stock Prices,” Wired Blog Net-
work, September, 2008.

14. Krebs, B., “Web Fraud 2.0: Validating Your Stolen Goods,” The Washington Post,
August 20, 2008.

15. Li, W., Stolfo, S. J., Stavrou, A., Androulaki, E., and Keromytis, A., ”A Study of
Malcode-Bearing Documents,” DIMVA, pp. 231-250, 2007.

16. Maloof, M. and Stephens, G. D., “ELICIT: A System for Detecting Insiders Who
Violate Need-to-know,” Recent Advances in Intrusion Detection (RAID), 2007.

17. McRae, C. M. and Vaughn, R. B., “Phighting the Phisher: Using Web Bugs and
Honeytokens to Investigate the Source of Phishing Attacks,” Proceedings of the
40th Hawaii International Conference on System Sciences, 2007.

18. Orbiscom. http://www.orbiscom.com/
19. Richardson R., “CSI/FBI Computer Crime and Security Survey”, 2007.
20. Smith, R. M., “Microsoft Word Documents that Phone Home”, Privacy Founda-

tion, August, 2000.
21. Song Y., Locasto M. E., Stavrou A., Keromytis A. D., and Stolfo S. J.. “On the

infeasibility of modeling polymorphic shellcode,” In Proceedings of the 14th ACM
conference on Computer and communications security (CCS07), pp. 541-551, 2007.

22. Spitzner, L., “Honeypots: Catching the Insider Threat” Proceedings of ACSAC.
Las Vegas, December, 2003.

23. Spitzner, L., “Honeytokens: The Other Honeypot”, Security Focus, 2003.
24. Stoll, C. The Cuckoo’s Egg, Doubleday, 1989.
25. Symantec. Global Internet Security Threat Report, April 2008. Trends for July

–December 07.
26. Webb, S., Caverlee, J., and Pu, C., ”Social Honeypots: Making Friends with a

Spammer Near You,” In Proceedings of the Fifth Conference on Email and Anti-
Spam (CEAS 2008), Mountain View, CA, August 2008.

27. Ye, N., “Markov Chain Model of Temporal Behavior for Anomaly Detection,”
Proceedings of the 2000 IEEE Workshop on Information Assurance and Security,
United States Military Academy, West Point, NY, pp. 171-174, June 2000.



20 Authors Suppressed Due to Excessive Length

28. Yuill, J., D. Denning, and Feer, F., “Using Deception to Hide Things from Hackers :
Processes, Principles, and Techniques,” Journal of Information Warfare, 5(3):26-40,
November, 2006.

29. Yuill, J., Zappe M., Denning D., and Feer F.. “Honeyfiles: Deceptive Files for Intru-
sion Detection,” Proceedings of the 2004 IEEE Workshop on Information Assurance,
United States Military Academy, West Point, NY, pp. 116-122, June 2004.

Fig. 1. Decoy email message with embedded Gmail account information.

Fig. 2. Decoy tax document with bogus user information.


