
Page-1 Distribution Statement A. Approved for Public Release.

Better Software

Michael May, Ph.D.
Associate Director for Software

Office of the Assistant Secretary of Defense
for Research & Engineering

Software Certification Consortium
The Road to a Cyber-Physical System with Designed-In Assurance

26 January, 2015

Page-2 Distribution Statement A. Approved for Public Release.

What’s Wrong With Software?

It’s simple.
Really?

Page-3 Distribution Statement A. Approved for Public Release.

#1 Costs Too Much

45%

65%

0%

25%

50%

75%

100%

1995 2010 2025
Based on industry figures from Ward, D., Helton, S., Estimating Return on Investment for SAVI (a Model-Based
Virtual Integration Process), Proceedings of SAE International Aerospace Technology Conference, 2011.

Software is Growing as a Percentage of
Total System Cost

For complex DoD systems, we get as little as
6 lines of code per person per day when you
count labor from requirements through
verification testing. (Analysis by the
Software Engineering Institute)

Page-4 Distribution Statement A. Approved for Public Release.

#2 Interconnectivity Increases Cyber Risk

Emerging threats Legacy system
upgrades

Mobile devices

Critical
infrastructures

Cloud/networked systems

Complex software supply chain

Insider threats

Page-5 Distribution Statement A. Approved for Public Release.

DoD Feels the Pain

• DoD knows what’s wrong with software
– Issues in software development cause schedule slippage and cost

growth
– Examples of programs with software issues: AARGM, B-2EFH

SATCOM, JSF, FAB-T, GPS OCX, JLENS, JPALS, AMF JTRS, KC-46,
BAMS UAS, SBIRS High, B-2 DMS, DDG 51 Destroyer, JTRS GMR,
MEADS CAP (GAO Assessments of Selected Weapon Programs, GAO-
12-400SP).

• DoD Software Challenges
– Rapidly-evolving, complex operational environment
– Requirements are increasingly met through software
– DoD must make advances to respond to adversaries
– No sign industry is addressing the challenges; looking to DoD to lead

• Software Assurance
– “The software functions as intended, and only as intended.”
– RFI: 2013 on Assurance

Page-6 Distribution Statement A. Approved for Public Release.

DoD Software Assurance:
Nov 2013, Request for Information

Responses from biggest players in defense and non-defense industry, small companies,
consortia, other Government Agencies

• Pointers to existing assurance efforts: NIAP, NIST, DHS, SAFECode, etc.
• Offers of innovative, but proprietary, solutions
• Protection of proprietary source code dis-incentivizes third-party analyses
• Reminder: one size never fits all — don’t over-prescribe the solution

Can DoD help incentivize a public-private
partnership to ensure software works as

intended, and only as intended?

Common Interest ↔ Common Issues

Suppliers Suppliers
Public

Page-7 Distribution Statement A. Approved for Public Release.

Back to First Principles

What are we trying to do? No kidding.
Here’s a requirement…I want running code that meets the
requirement.

What would that look like? Again, no kidding.
Here’s a perfectly well-defined, verified-correct, complete
requirement; and an error-free programmer and compiler with
perfect knowledge of the requirement and computing platform.

?

Page-8 Distribution Statement A. Approved for Public Release.

hfhriufewowmlapdj
etjge94oin359t538k
dfjdsffwfoijdsfosjfj

wfjjwirjtdfsjg0934j0

What do we actually do?

• Manual, mistake prone (must
be checked and rechecked)

• How do I know when to stop
checking?

?

hfhriufewowmlapdj
etjge94oin359t538k
dfjdsffwfoijdsfosjfj

wfjjwirjtdfsjg0934j0

?

hfhriufewowmlapdj
etjge94oin359t538k
dfjdsffwfoijdsfosjfj

wfjjwirjtdfsjg0934j0

?

Requirements
(aka model)

Derived Requirements
(aka model)

Specifications
(aka model)

Hardware
(aka model)

• We don’t teach model checking
and theorem proving in general.

• Considered a special skill (PhD).
• Imperative languages exacerbate

the problem.

Code
(aka model)

Page-9 Distribution Statement A. Approved for Public Release.

hfhriufewowmlapdj
etjge94oin359t538k
dfjdsffwfoijdsfosjfj

wfjjwirjtdfsjg0934j0

What do we actually do?

• Manual, mistake prone (must
be checked and rechecked)

• How do I know when to stop
checking?

?

hfhriufewowmlapdj
etjge94oin359t538k
dfjdsffwfoijdsfosjfj

wfjjwirjtdfsjg0934j0

?

hfhriufewowmlapdj
etjge94oin359t538k
dfjdsffwfoijdsfosjfj

wfjjwirjtdfsjg0934j0

?

Requirements
(aka model)

Derived Requirements
(aka model)

Specifications
(aka model)

Hardware
(aka model)

• We don’t teach model checking
and theorem proving in general.

• Considered a special skill (PhD).
• Imperative languages exacerbate

the problem.

Code
(aka model)

It Gets Worse!

Page-10 Distribution Statement A. Approved for Public Release.

Why are we in this condition?

• History (and cost) drove us to abstractions.
• They were much more useful than an Electrical Engineer with

punch cards, and infinitely more portable.
• This was fine, until…

Emerging threatsLegacy system
upgrades

Mobile devices

Critical
infrastructures

Cloud/networked systems

Complex software supply chain

Insider threats

Page-11 Distribution Statement A. Approved for Public Release.

How Do You Fix Software?

It’s simple.
Not Really.

Page-12 Distribution Statement A. Approved for Public Release.

What’s the Future

• Model-driven development
– Requirements-to-runtime, vertically integrated, mathematically proven.
– Yes, this is hard. So, you can cheat and compose modules.
– Business process for this is unknown. What’s earned value

management when you are correct by construction?
– People need to do more of what people are good at.

• That’s it? Are we done? No.
– Correct by construction changes the conversation toward a solution

people can comprehend/manage: “What do you mean by correct?”
– Machines do the hard part.
– What are the new tools? What does this automated “software assembly

line” look like? What’s the market?
– How do we protect Intellectual Property?
– How do we choose composable parts that scale?

Page-13 Distribution Statement A. Approved for Public Release.

How do we get to the future?

• Demonstrate that it can be done (research)
– Software Engineering Institute; AVSI-SAVI; DARPA, Service Labs,

Industry, Academia
– “Engineered Resilient Systems” DoD’s physics-based model-driven

development effort. (Here’s the physical in cyber-physical)
• Work with industry

– Challenge the status quo (where’s the demand for formal logic?)
– Tools that change the way we work
– Division of labor not necessarily the way research did it (see above)
– Intellectual Property opportunities will be different than today

• Work with existing programs
– Pilot in component upgrades to legacy systems
– Don’t pontificate; socialize

Put Humpty-Dumpty together?

All the king's horses and all the king's men
 Couldn't put Humpty together again.

Implies Humpties exist.
Don’t fight entropy. Lay an Egg.

	Better Software
	What’s Wrong With Software?
	#1 Costs Too Much
	#2 Interconnectivity Increases Cyber Risk
	DoD Feels the Pain
	DoD Software Assurance: �Nov 2013, Request for Information
	Back to First Principles
	What do we actually do?
	What do we actually do?
	Why are we in this condition?
	How Do You Fix Software?
	What’s the Future�
	How do we get to the future?

