BitBlaze: Binary Analysis for
Computer Security

Dawn Song

Computer Science Dept.
UC Berkeley

Malicious Code---Critical Threat on the Internet

Diverse forms
— Worms, botnets, spyware, viruses, trojan horses, etc.

High prevelance
— CodeRed Infected 500,000 servers

— 61% U.S. computers infected with spyware [National Cyber
Security Alliance06]

— Millions of computers in botnets
Fast propagation
— Slammer scanned 90% Internet within 10 mins

Huge damage
— $10billion annual financial loss [ComputerEconomics05]

Number of new threats

Growth of New Malicious Code Threats

1,800,000 —
1,656,227
1,600,000 —

1,400,000 —

1,200,000 —

1,000,000 —

800,000 —

624,267

600,000 — '

400,000 —

200,000 —) 113,025 140,690
20,547 18,827 S

0 — — -
2002 2003 2004 2005 2006 2007 2008
Period

(source: Symantec)

Defense I1s Challenging

Software inevitably has bugs/security vulnerabilities
— Intrinsic complexity
— Time-to-market pressure
— Legacy code
— Long time to produce/deploy patches
Attackers have real financial incentives to exploit them
— Thriving underground market

Large scale zombie platform for malicious activities
Attacks increase in sophistication

We need more effective techniques and tools for defense
— Previous approaches largely symptom & heuristics based

The BitBlaze Approach

Semantics based, focus on root cause;

Automatically extracting security-related properties from binary code
(vulnerable programs & malicious code) for effective defense

Automatically create high-quality detection & defense mechanisms
— Automatic generation of vulnerability signatures to filter out exploits

— Automatic detection and classification of malware
» Spyware, keylogger, rootkit, etc.
— Automatic detection of botnet traffic

Able to handle binary-only setting
— Important for COTS & malicious code scenarios
— Binary is truthful

The BitBlaze Research Foci

Design and develop a unified binary analysis platform for
security applications

— Identify & cater common needs of different security applications

— Leverage recent advances in program analysis, formal methods,
binary instrumentation/analysis techniques to enable new
capabilities

Introduce binary-centric approach as a powerful arsenal
to solve real-world security problems

« COTS vulnerability discovery, diagnosis & defense

e« Malicious code analysis & defense

 Automatic model extraction & analysis

« More than a dozen security applications & publications

Outline

« BitBlaze Binary Analysis Infrastructure
— Challenges
— Design rationale
— Architecture

« BitBlaze in action: sample security applications
— Automatic patch-based exploit generation
— In-depth malware analysis

e Future directions of binary analysis & beyond

BitBlaze Binary Analysis Infrastructure: Challenges

Complexity
— 1A-32 manuals for x86 instruction set weights over 11 pounds

Lack higher-level semantics
— Even disassembling is non-trivial

Require whole-system view
— Operations within kernel and interactions btw processes

Malicious code may obfuscate
— Code packing
— Code encryption
— Code obfuscation & dynamically generated code

BitBlaze Binary Analysis Infrastructure: Design Rationale

 Accuracy
— Enable precise analysis, formally modeling instruction semantics

* Extensibility
— Develop core utilities to support different architecture and
applications

* Fusion of static & dynamic analysis

— Static analysis
» Pros: more complete results

» Cons: pointer aliasing, indirect jumps, code obfuscation, kernel &
floating point instructions difficult to model

— Dynamic analysis
» Pros: easier
» Cons: limited coverage

— Solution: combining both

BitBlaze Binary Analysis Infrastructure: Architecture

e The first infrastructure:

— Novel fusion of static, dynamic analysis techniques, and formal
analysis techniques such as symbolic execution & abstract
Interpretation

— Capable of analyzing whole system (including OS kernel)
— Capable of analyzing packed/encrypted/obfuscated code

Vine: TEMU: Rudder:
Static Analysis] |Dynamic Analysis| | Mixed Execution
Component Component Component

BitBlaze Binary Analysis Platform

10

Vine

e Static analysis component

Control flow,
Data flow analysis,
Optimizations,
Value Set Analysis

Binar . | i
—»y' Disassemble p—— Cor:;/elgmg

Disassembl
Y Symbolic execution,

Computing WP

Computing Chop, slicing
Program Transformation

Output
Program

11

TEMU

 Work for both Windows & Linux, applications & kernel
 Build on QEMU

: Function
 OS-level semantics Call
Sequence
Log
instructions
Slicing
Dynamic
Binary Record Data Annotated
Instrumentation Dependency Trace Layerec_al,
(Taint Analysis) Panoptl_c
Symbolic
Execution
Symbolic
Execution w
Symbolic
System

Environment 12

Rudder

« Compute path predicate
* Obtain new path predicate by reverting branches
* Solve path predicate to obtain new input to go down a

different path

Path predicate
generator

Solving
Path Selector » New Path
Predicate

, Inputto

Rudder

New path

13

Outline

« BitBlaze Binary Analysis Infrastructure
— Challenges
— Design rationale
— Architecture

« BitBlaze in action: sample security applications
— Automatic patch-based exploit generation
— In-depth malware analysis

e Future directions of binary analysis & beyond

14

Patch Tuesday

 On the surface: security patches fix vulnerabilities

 Beneath the surface:
— What's the security consequence of a patch release?

 Our work:
— Current patch approach is dangerous
— Automatic exploit generation

LA

Automatic Patch-based Exploit Generation

e Given vulnerable program P, patched program P’,
automatically generate exploits for P

« Why care?
— Exploits worth money
» Typically $10,000 - $100,000
» Great source of research funding :-)

— Know thy enemy
» Security of patch distribution schemes?
» Can a patch make you more vulnerable?

— Patch testing

16

Running Example

read input | | |
: « All integers unsigned 32-bits

\ 4 e All arithmetic mod 232
If input 0 2==0 * Motivated by real-world vulnerability

F/ \T

S:=input+3| |s:=input+2

~ N

ptr := realloc(ptr, s)

17

Running Example

n read input

A 4

iInput = 232-2

< 232.2 0 2 ==

if input % 2==0

'

\T

S :=input + 3

S :=input + 2 [+—— s:=0(2%2-2 + 2 % 2%)

~

N

ptr := realloc(ptr, s) |« ptr := realloc(ptr,0)

™~

Using ptr is a problem

7

18

Running Example

E read input

. . *
If iInput % 2==0

"/

S :=input + 3

Integer Overflow when:
S < Input

S = input + 2

/

ptr .= realloc(ptr, s)

19

Running Example

E read input

A 4
If input % 2==0

F/ \T

S:=input+ 3| |[s:=input+ 2

~ e

ptr := realloc(ptr, s)

%

—

about overflowI

N—

| didn’t think

All 32-bit integers

Exploits:
232-3,
232-2,
232-1

™~

2 K
X

20

Program

Inputs

Input Validation Vulnerability &

* Programmer fails to sanitize inputs

e Large class of security-critical vulnerabilities
— “Buffer overflow”, “integer overflow”, “format string vulns”, etc.

 Responsible for many, many compromised computers

21

Patch

E reao_l Input P’ read input
H H

If input % 2== if input % 2==

/N N

S:=input+3] |s:=input+2 || |g:=input+3| |s:=input+ 2

ptr := realloc(ptr, §) |f s > input
/ F T
[Overflow when l//\ \
S < input Err ptr\grealloc(ptr S)
/ N\
~ Patch leaks —~~

1. Vulnerability point (where in code)

~—_ 2. Vulnerability condition (under what conditions)

22

Patch

E reao_l Input P’ read input
H H

If input % 2== if input % 2==

"/ \ ' "/ \ '

S:=input+ 3| [s:=input+2|||s:=input+3| |s:=input+2

ptr := realloc(ptr, s) if s > input
"/ N
Error ptr := realloc(ptr, s)

Exploits for P are inputs that fail

vulnerability condition at vulnerability point
(s > Input) = false

Our Approach for Patch-based Exploit Generation (1)

Exploit Generation

1. Diff P and P’ to identify
candidate vuln point and
condition

2. Create input that satisfy
candidate vuln condition in P’

— l.e., candidate exploits
3. Check candidate exploits on P

Patch

P1

read input

v

If input % 2==

"/

\T

=input + 3

= input + 2

~

P

If s > input

"/

\T

Error

ptr := realloc(ptr, s)

24

Our Approach for Patch-based Exploit Generation (Il)

« Diff P and P’ to identify candidate vuln point and condition
— Currently only consider inserted sanity checks

— Use binary diffing tools to identify inserted checks
» Existing off-the-shelf syntactic diffing tools
» BinHunt: our semantic diffing tool

 Create candidate exploits
— I.e., input that satisfy candidate vuln condition in P’

 Validate candidate exploits on P
— E.g., dynamic taint analysis (TaintCheck)

25

Create Candidate Exploits

e Given candidate vulnerability point & condition

« Compute Weakest Precondition over program paths
— Using vulnerability condition as post condition
— Construct formulas representing conditions on input
» Whose execution path included
» Satisfying the vulnerability condition at vulnerability point
e Solve formula using solvers
— E.g., decision procedures
— Satisfying answers are candidate exploits

26

Different Approaches for Creating Formulas

Statically computing formula
— Covering many paths (without explicitly enumerating them)
— Sometimes hard to solve formula

Dynamically computing formula
— Formula easier to solve
— Covering only one path

Combined dynamic and static approach
— Covering multiple paths
— Tune for formula complexity

Experimental results
— Different approach effective for different scenarios

Other techniques to make formulas smaller and easier
to solve

27

Experimental Results

* 5 Microsoft patches
— Mostly 2007
— Integer overflow, buffer overflow, information disclosure, DoS

« Automatically generated exploits for all 5 patches
— In seconds to minutes
— 3 out of 5 have no publicly available exploits
— Automatically generated exploit variants for the other 2
« Diffing time
— A few minutes

28

Exploit Generation Results

Time (s) DSA_Setltem | ASPNet | GDI IGMP PNG
_Filter
Dynamic 5.68 11.57 10.34 N/A N/A
Total
Formula 5.51 4.64 10.33 N/A N/A
Solver 0.17 6.93 0.01 N/A N/A
Static 83.47 N/A 26.41 N/A N/A
Total
Formula 2.32 N/A 4.99 N/A N/A
Solver 81.15 N/A 21.42 N/A N/A
Combined 11.51 N/A 29.07 13.57 104.28
Forumla 6.72 N/A 25.29 13.31 104.14
Solver 4,79 N/A 3.78 0.26 0.14

29

When could technique fail?
— Decision procedure cannot solve C

— Exploit depends on several conditions in P’
(works in some cases)

— efc.

However, security design must
conservatively estimate attackers
capabilities

30

We generate exploits in seconds to minutes

+

Fast worms: ~10 minutes to infect all hosts [2003]

Patch release can create serious threats

4
=

)
E

North America
Asia

“a 16 24 8 16 24 &8 18 24 B
UTC time {hours)

Unique IP’s contacting Windows Automatic Update
[GKPVO06] 31

Fresh |Ps per 1 sec
Id
A

%

Outline

BitBlaze Binary Analysis Infrastructure
— Challenges
— Design rationale
— Architecture

BitBlaze in action: sample security applications
— Automatic patch-based exploit generation
— In-depth malware analysis and other applications

Other security applications

Conclusions

32

Other Security Applications

Effective new approaches for diverse security problems
— Over dozen projects
— Over 12 publications in security conferences

Exploit detection, diagnosis, defense

Vulnerability

Inputs Exploit Exploits Diagnosis Info Filter |

" Detector Engine Generator

Automatic Vulnerability discovery
— Loop extended symbolic execution
— String-enhanced white-box exploration for model extraction

In-depth malware analysis
Others:
— Reverse engineering
— Deviation detection [Best Paper Award]
— Semantic binary diff 33

Automatic Vulnerability Discovery (1)

* BitFuzz
— Smart fuzzing to explore program execution space to find bugs

— Found bugs in real-world programs, e.g., CVE for MS program
gdi32.dll

 Challenges
— Scalability to large programs
— Inputs with structures
— Programs with loops
— Solving complex constraints

34

Automatic Vulnerability Discovery (ll)

Advanced symbolic execution for more effective exploration
of program execution space:

« Grammar-aware symbolic execution
— Handle inputs with rich structures

 Loop-extended symbolic execution
— Handle programs with loops

 New decision procedure for solving complex constraints
— Theory of strings

35

Results (I): Vulnerability Discovery

* On 14 Benchmark Applications (MIT Lincoln Labs)

— Created from historic buffer overflows (BIND, sendmail, wuftp)

* Found at least 1 vulnerability in each benchmark
-1 exploit location in sendmail 7 benchmark

« Highly effective for testing:
— Over 60% candidates were real attacks.
— 20 real vulnerabilities out of 32 candidates exploits.

36

Results (I1): Real-world Vulnerabilities

e Diagnosis and Discovery 3 Real-world Case Studies
— SQL Server Resolution [Slammer Worm 2003]
— GDI Windows Library [MS07-046]
— Gaztek HTTP web Server

« Diagnosis Results
— Results precise and field level

* Discovery Results: Found 4 buffer overflows in 6 candidates
— 1 new exploit location for Gaztek HTTP server

Program Buffer size Condition for overflow
(bytes)
GHittpd (1) 220 URI.len > 172
[NEW] GHttpd (2) 208 URI.len > 133
SQL Server 128 DBName.len > 64
GDI 4096 (2-INP[19:18])»2 < 0

37

Results (llIl): Code Coverage

e Qualitative Measurement

* New loop based symbolic constraints: 270 in 17 targets

— On an average 15 new constraints become symbolic

Program Input Format Initial Input Exploit Input Bug / Time (s) p-De
Candidate onditions
BIND | DNS QUERY 104 bytes, RDLen=48 RDLen=16 1/5 TN G
BIND 2 DNS QUERY 114 bytes, RDLen=46 RDLen=30 1/4 2155 12
BIND 3 DNS IQUERY 39 bytes, RDLen=4 RDLen=516 112 586 13
BIND 4 DOMAINNAME “web.foo. mit.edu” “web.foo.mit.edu” (64 times) 1/ 4464 52
Sendmail | Byte Amray OO “<>" (89 times) 4/5 672 I
Sendmail 2 | struct passwd (Linux) (*" “root”,0,0, “root”,*","") (“".“root”,0,0, rootroo”,*","") /1 526 38
Sendmail 3 [String] ¥ [a=\n"]* [“a=\n"]* 1/4 626 18
Sendmail 4 Byte Array “aaa” “a” (69 times) 1/1 633 2
Sendmail 5 Byte Array “\\\" *\" (148 times) 33 1808 6
Sendmail 6 OPTIONo™ '0ARG “-d aaaaaaaaaa-2" “.d4222222222-2" 111 676 [l
Sendmail 7 | DNS Response Fmt TXT Record : “aaa” Record : “a” (32 times) 1/1 237 16
WuFTP | String “aaa” “a” (9 times) 212 483 5
WuFTP 2 PATH “aaa” “a” (10 times) 11 197 29
WuFTP 3 PATH “aaa” “a” (47 times) 11 109 7
GHttpd MethodoURIoVersion | “GET /index.html HTTP/1.1" | “GET "+188 bytes + “ HTTP/1.1” 212 1562
SQL Server | CommandoDBName x04 x61 x61 x61 x04 x61(194 bytes) 113 205
GDI (Not required) 1014 bytes, INP[19:18]=0x0182 INP[19:18]=0x4003 1/1 353

Automatic Model Extraction

« Automatic model extraction
— E.g., identifying vulnerability in web browsers’ security policy

« Automatic grammar/protocol extraction

— Automatic grammar-aware symbolic execution and grammar
extraction combine seamlessly and enhance each other

39

Symbolic Execution: Path

X86 instructions

MOV
MOV
CMP
JINZ
MOV
MOV
CMP
JINZ

(%est1), %al
$0x47, %bl
%al, %bl
FAIL
1(%est1), %al
$0x45, %bl
%al, %bl
FAIL

Predicate
GET/
ATTP/L1 >
Intermediate Path
Representation (IR) ||ored| cate
(NPU [0] =='G")
AL = INPUT[O]
BL = °G” (INPUT[1] == ‘E)
ZF = (AL == BL) A
IF(ZF==0)JIMP(FAIL)
AL = INPUT[1]
BL = “E~
ZF = (AL == BL)

IF(ZF==0)JMP(FAIL)

40

White-Box Model Extraction

 White-box exploration
— Obtain path predicate using symbolic input
— Reverse condition in path predicate
— Generate input that traverses new path
— Iterate until user-specified timeout expires

 Model: disjunction of path predicates

Myso=AVvBvD

200 200 200 N

Extracting Content Sniffing Algorithms in Browsers

Browser Signature for image/qgif

Internet Explorer 7 (strncasecmp(DATA,“GIF87",5) ==
gs;tlrln casecmp(DATA“GIF89”,5) ==

Firefox 3 strncmp(DATA,“GIF8” ,4) ==

Safari 3.1 N/A

Google Chrome (strncmp(DATA“GIF87a”,6) == 0) ||
(strncmp(DATA,“GIF89a”,6) == 0)

Browser Signature for image/jpeg

Internet Explorer 7 DATA[O:1] == Oxffd8
Firefox 3 DATAJO:2] == Oxffd8ff
Safari 3.1 DATA[O:3] == Oxffd8ffe0
Google Chrome DATAJ[O:2] == Oxffd8ff

42

Content Sniffing XSS Attacks

WIKIPEDIA

e i
g
Qe st cdmats

The Free | ‘.‘m')t'ff'ipt'{ffd

43

In-depth Malware Analysis

 High volume of new malware needs automatic malware analysis

 Given a piece of suspicious code sample,
— What malicious behaviors will it have?
— How to classify it?
» Key logger, BHO Spyware, Backdoor, Rootkit
— What mechanisms does it use?
» How does it steal information?
» How does it hook?
— Who does it communicate with? Where does it send information to?
— Does its communication exhibit certain patterns?
— Does it contain trigger-based behavior?

» Time bombs
» Botnet commands

« Can we design & develop a unified framework to answer these
guestions?

44

BitScope: THE In-depth Malware Analysis infrastructure

 |dentify/analyze malicious behavior based on root cause
— Privacy-breaching malware: spyware, keylogger, backdoor, etc.
— Malware perturbing system by hooking: rootkit, etc.

« Understand how malware get into the system
— What mechanisms/vulnerabilities does it exploit

 Explore hidden behavior, detect trigger-based behavior
— Automatically identifying botnet program commands, time bombs

BitScope

Extractor

Symbolic >
system
environment —»

» CFG

Rudder: » Solutions / Inputs
Malici > . —>
gi:falous Mixed —» Impacts / Behaviors
Y Path execution
Selector engine » Single-path Dependency Info
T \F

o O

—» Multi-path Dependency Info.
45

BitBlaze Malware Analysis Online

* A subset of our malware analysis functionalities
— Malware unpacking
— Extracting behaviors

« Parallel architecture for high-volume malware analysis

* Public service:
— Submit malware samples and get results back

46

The Vision

e Binary-only code audit and assurance
— Given athird-party program
— Does it have vulnerabilities?
— Does it have certain security guarantees?
— Does it contain trojans?

* Design and develop an infrastructure to accomplish this

— More advanced binary analysis and program verification
techniques

— Annotated binaries
— Holistic solution including the software development cycle

47

Conclusion

e BitBlaze binary analysis platform
— A unique fusion of dynamic, static analysis & formal analysis

e Solutions to broad spectrum of security applications
— Vulnerability discovery, diagnosis, defense
— In-depth malware analysis
— Automatic model extraction and analysis

* Important future research direction

48

Contact

* http://bitblaze.cs.berkeley.edu

« dawnsong@cs.berkeley.edu

* BitBlaze team:
David Brumley, Juan Caballero, Ivan Jager, Min Gyung
Kang, Zhenkai Liang, James Newsome, Pongsin
Poosankam, Prateek Saxena, Heng Yin

49

