
You Build It You Break It 
We	Do	Research	On	It	And	Publish	It	

	
Andrew	Ruef,	Mike	Hicks,	Dave	Levin,	Jandelyn	Plane,	Piotr	Mardziel,	

A@f	Memon,	Michelle	Mazurek,	James	Parker	



Obligatory: We Care About Security 



Where we come in: contests 

• Well	designed	contests	can	capture	a	lot	of	the	security	space	
•  Lots	of	contests	for	opera@onal	aspects	of	security	

•  DEFCON	CTF	
•  NCCDC	/	CDX	

• Contests	for	research	purposes	
•  CGC	



A “new” contest 

•  Security	focused		
•  Unlike	TopCoder	

• Development	focused	
•  Unlike	CTF	

• Programming	language	/	tool	independent		
•  Best	tools	should	win	



What’s our idea? 
•  A	contest	where	contestants	

•  Build	some	secure	soQware	according	to	a	specifica@on		
•  Break	the	soQware	wriSen	by	other	contestants		
•  Fix	the	bugs	found	in	their	soQware	by	other		

•  Organizers	provide	the	specifica@on	
•  Spread	the	contest	over	three	weekends		
•  Each	phase	takes	one	weekend		
•  Announce	two	winners,	one	for	best	soQware,	one	for	most	
bugs	found	



Challenge specifications 

• Needs	to	be	at	least	a	liSle	fun	
• Have	high	and	low	level	security	proper@es	

• Wri@ng	in	Java	or	Python	should	not	win	by	default	

•  Judge	implementa@ons	on	both	correctness	and	performance		
• Capable	of	unambiguously	tes@ng	features	
•  Should	be	somewhat	complicated,	but	doable	in	72	hours	



Secure Log 

2	 3	 4	

1	

logappend	–T	1	–A	–E	Rob	logfile	

logappend	–T	2	–A	–E	Rob	–R	1	logfile	

logappend	–T	3	–L	–E	Rob	–R	1	logfile	

Rob	

logappend	–T	4	–A	–E	Rob	–R	2	logfile	

Rob	

Rob	



Totally	Safe	

ASacker	Central	

ATM / Bank 

bank	

auth	

atm	

card	



Types of failures 

• Correctness	–	The	program	didn’t	meet	some	part	of	the	
specifica@on,	or	crashes		

•  Integrity	–	The	log	can	be	modified	to	aSest	to	a	false	fact		
• Confiden;ality	–	The	log	can	be	analyzed	to	determine	a	protected	
fact	

• We	can	automa@cally	judge	correctness	and	integrity	bugs	
•  Integrity,	confiden@ality,	and	a	correctness	bug	that	produces	a	crash	
are	counted	as	exploits	



Data 

• Run	3	contests	over	2	years		
•  ~70	implementa@ons	of	problems		
•  ~160	par@cipants		

• Commit	history	by	author	
• Program	ar@facts	over	@me		

•  C,	C++,	Ocaml,	Python,	Java,	PHP,	go,	rust…	

• Bugs	found	over	@me		



Scores over time 



Commit Activity 



Commits by contributor, per 
team 



ATM break scenario 

• No	access	to	bank/ATM	auth	file	or	account	card	file	
• Confiden@al	break	–	reveal	secret	data	(account	name	or	balance)	
•  Integrity	break	–	modify	an	account	holders	balance	
• Can	request	a	few	things		

•  Crea@on	of	an	account	with	an	unknown	name	
•  An	unknown	user	performs	some	ac@on		



ATM break scenario 

bank	atm	

helper	

123123…	 123123…	
123123…	



Good stories 

• Use	SSL	and	PKI	
•  Bank	/	ATM	auth	files	are	SSL	private	keys	
•  Cer@ficate	level	auth	

• Use	NaCl		
•  Messages	are	NaCl	secret	boxes	with	a	nonce	(star@ng	at	1337	of	course)	



Bad stories 

• Predictable	generated	auth	tokens	
•  Accounts	can	be	forged	

• Custom	encrypted	transport	protocol	with	no	nonces	
•  Messages	can	be	replayed	



Ugly stories 

• No	encryp@on	/	no	authen@ca@on	
• Bad	command	line	parameter	sani@za@on	

• While	wri@ng	C	code	

• Home	rolled	crypto	algorithms	



Data analysis ongoing 

• Par@cipant	factors	that	lead	to	secure	code	
•  Experience	
•  Past	history	with	security		

• Model	developed,	analysis	under	submission	

•  In	the	future,	quan@ta@ve	proper@es	of	programs?	
•  Cycloma@c	complexity	
•  State	“depth”	



Future problems? 

• Online	poker	
• Remote	vehicle	control		
•  Image	processing		



Thanks! 


