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Data Breaches 2011 2012 2013
http://informationisbeautiful.net



Data Breaches 2014
http://informationisbeautiful.net



“Recommendation 3: … the NITRD agencies, should 
strengthen U.S. research in privacy-related technologies and 
in the relevant areas of social science that inform the 
successful application of those technologies.”



“…. create appropriate balance among economic 
opportunity, national priorities, and privacy protection.” 


[PCAST Report, May 2014]
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Privacy Research vs Deployment



Outline

1.  Data analytics setting

2.  Privacy preserving tools

-  Computational

-  Statistical


3. Reflections on future directions
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The Data Analytics Setting
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Data Analytics Setting
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Personal Privacy Setting
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Enterprise Privacy Setting
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Privacy & Security Requirements
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Tools, their capabilities & limitations
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Privacy-Preserving Data Sharing

Privacy questions

1.  How to share common data w/o revealing 

unique data?


2.  How to privately ascertain whether data is 
worth sharing or purchasing?





Applications

Cyber threat mitigation, recommendation 
engines, data monetization
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Sharing 
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Private Set Intersection

Can be implemented in many ways with classical cryptographic 
tools, e.g., Bloom filters, hashing, RSA-style encryption, etc.

Can be made secure against malicious participants.


Supports a very specific operation, e.g., efficient for PSI, but very 
inefficient for count queries.


Hard to use with noisy data.
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Privacy-preserving Data Mining
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Analytics!

Privacy Questions

1.  Which queries are possible given available privacy primitives?


2.  How to preserve database privacy and query privacy?


Applications

Federated search, Healthcare analytics, Data quality assessment, 
Education analytics, Call graph analysis, Transportation analytics, 
too many to list.
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Homomorphic Cryptosystems

Additive
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2-DNF homomorphic



Fully homomorphic
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E(x)E(y) ⌘ E(x + y)

E(x)E(y) ⌘ E(xy)

e(E(x), E(y)) ⌘ F (xy)
F (xy + uv) ⌘ F (xy)F (uv)

E(x + y) ⌘ E(x) + E(y)

E(x)E(y) ⌘ E(xy)

[Paillier 99, Damgard-Jurik 01] 


[El Gamal 85] 


[Boneh, Goh, Nissim 05] 


[Gentry, 09]

[Gentry, Halevi, Vaikunthanathan 10]

[Brakerski, Vaikunthanathan 10]




Homomorphic Cryptosystems
Enables outsourced cloud computing for rich variety of functions. 





Some formulations, e.g., Ring Learning With Errors, are resistant to 
quantum computing attacks. 
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Memory access patterns reveal information about data elements.
(cf. ORAM)




Most schemes were developed for semi-honest parties. For 
malicious parties, use ZKP, but this increases complexity.



Data is growing faster than computational power. Moore’s law 
won’t save us from the complexity of FHE.




Secret Sharing

Can be achieved using error correcting codes. [Shamir, 1979]


At the heart of information-theoretically secure multiparty computation. 
[BGW,1988][CCD,1988]. Each party computes functions of shares, which 
are combined to obtain a function of the secret.


Computationally efficient. Tolerates < n/3 cheaters for arbitrary functions.


Must keep track of inter-participant communications. Not much is known 
for computation with n=3 parties! [Wang, Ishwar, Rane, 2014]
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Garbled Circuits & Oblivious Transfer

Alice produces garbled circuit for function f


Alice provides her keys corresponding to her input to Bob


Bob obtains his keys from Alice via 1-of-2 OT


Bob evaluates circuit by decryption using his and Alice’s keys


Implementations: Fairplay [Malkhi, Nisan, Pinkas, Sella, 04]
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k0
 E( k0 || m0 , 0 )
 E( k0 || m1 , 1 )


k1
 E( k1 || m0 , 1 )
 E( k1 || m1 , 1 )


[Ex from Prabhakaran’s Crypto Notes, 14] 

OR Gate


Garble




GCs: Advantages and Limitations
General primitive for secure computation. [Yao, 86]





Speed-up: Free XORs, row reduction [Pinkas, Schneider, Smart, 
Williams 09] [Kolesnikov, Schneider 08].





Very impressive recent results on Levenshtein distance, Hamming 
distance, AES. [Huang, Evans, Katz, Malka, 11].




Circuits can be extremely complex for data-mining tasks such as 
classification, clustering, etc., especially with > 2 parties.





Circuit design and garbling requires in-house expertise.
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Searchable Encryption

Symmetric constructions based on ORAMs [Song, Wagner, Perrig, 00]. 
[Curtmola, Garay, Kamara, Ostrovsky, 06]

Public-key construction based on bilinear maps on elliptic curves. [Boneh, 
Di Crescenzo, Ostrovsky, Persiano, 04] 


Compatible with conjunctive, subset, range queries [Boneh, Waters, 07].


Can be vulnerable to repeated queries.


Public-key methods leak document identifiers.
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Order-Preserving Encryption

Weaker cryptographic technique where ciphertexts preserve order

-  Need knowledge about data values [Agarwal, Kiernan, Srikant, Xu, 04]

-  One-shot method with hyper-geometric sampling [Boldyreva, 

Chenette, Lee, O’Neill, 09, 11]

Supports range queries, median finding, and is deployed within cryptDB. 
[Ala Popa, Redfield, Zeldovich, Balakrishnan, 11, 12, 13] 

Ciphertext expansion can be prohibitive.
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Anonymization

Privacy Questions

1.  Which attributes are sensitive?

2.  How to anonymize sensitive attributes?

3.  What is the privacy-utility tradeoff for analytics on output data?

4.  What is the risk of re-identification via external linkage?


Applications

Disclosure control methods for advertising, healthcare, smart grid, 
education analytics, etc. 
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Data! Anonymization
 Anon 
Data!



Masking

Replaces PII with pseudonymous identifiers


Easy and fast. Identify sensitive attributes and hash them.


High utility, as long as only a few attributes are masked.


HIPAA compliant.
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Masking does not preserve privacy

MA Governor medical records [Sweeney 02]


NYT re-identification of AOL Search Data [Barbaro, Zeller, 06]


“Innocuous” DNA Statistics [Homer et al. 08] 


De-anonymization of Netflix database [Narayanan, Shmatikov 08, 11]
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Anonymization Methods
Input perturbation / generalization (e.g., k-anonymity)
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Data! Function! Anonymization
 Anon!
Function!

Data! Anon!
Data!Anonymization


Output perturbation (e.g., differentially private mechanisms) 




k-anonymity and variants

A record is indistinguishable from k-1 other records w.r.t. anonymized 
attributes. [Sweeney, 02]

Multidimensional methods available [LeFevre, DeWitt, Ramakrishnan 06]
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k-anonymity and variants
Stronger protection than simple masking.





Leaks information if sensitive attribute has low diversity, e.g., all 
patients have cancer.





l-diversity addresses diversity issue, but susceptible to skewness 
attacks on attribute values in an equivalence class. 
[Machanavajjhala et al. 07]





t-closeness address skewness, but destroys useful correlations in 
the process. [Li, Li, Venkitasubramanian, 07] [Domingo-Ferrer and 
Torra, 2008]
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Randomized Response
Binary case: Given p, estimate % of 0/1 [Warner 65]









Post-Randomization [Kooiman, Willenborg, Gouweleeuw 98]
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Randomized Response
Simple: usually add noise to the data.





Good for aggregate statistics e.g., PMFs, means, etc. 




Not suitable for many common tasks, e.g., max / min.











Privacy-utility tradeoff degrades very rapidly upon composition, as 
PRAM matrices can become poorly conditioned. [Lin, Wang, Rane, 
12]
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Differential Privacy

Perfect privacy                                        














Differential Privacy: Output is insensitive to any single element in D. Thus 
D and D’ appear statistically indistinguishable to an adversary. 


[Dwork, 06, 08, 09]
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Differential Privacy
Provides strong protection against adversaries with background 
information, unlike k-anonymity. [Kasiviswanathan, Smith, 08] 




Additively composable, i.e., if two mechanisms provide DP, then 
their cascade provides DP (albeit lower privacy than before).





Treats all records as equally private, heavily obfuscates rare values.


 


Noise variance is proportional to sensitivity of the function being 
published. Hard to determine. [Nissim, Raskhodnikova, Smith 07]





Privacy deteriorates with the number of queries. [Dwork 10]
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Reflections on future directions
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Owner-controlled Privacy Policies
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-  App in use

-  GPS location

-  Cell-tower 
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Controller
 Analyst


Orchestrating a Data Transaction

Match users’ requests for data against owners’ privacy policies.

Rewrite analytics programs using one or more privacy tools.

Update policies using feedback from previous computations.
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Conclusions
Multiple computational and statistical primitives can be leveraged 
for privacy in computation.



Need a way to assess and select methods according to their 
privacy-utility-efficiency tradeoffs.



Need interdisciplinary outlook (beyond crypto)

-  Statistics: New paradigms, e.g., Differential privacy

-  Machine learning: Support for legacy analytics. 

-  Domain-specific languages: Policy & Querying languages 

-  Signal processing: Dimensionality reduction
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