

CAS Static Analysis
Tool Study Overview

Center for Assured Software
National Security Agency

cas@nsa.gov

Agenda

Study Purpose
Test Cases

Scope
Statistics

Analysis Metrics
2010 Study Conclusions
2011 Study Plans

2

Study Purpose

Study capabilities of commercial and open source
static analysis tools for C/C++ and Java

Identify areas in which individual tools are strong
Determine how tools can be combined to use strong
tool(s) in each area

Study does NOT:

Cover anything other than results
Cost, performance, ease of use, customization, etc.

3

Tool License Model C/C++ Java
Tool 1 Commercial
Tool 2 Commercial
Tool 3 Commercial
Tool 4 Commercial
Tool 5 Commercial
Tool 6 Commercial
Tool 7 Open Source
Tool 8 Open Source
Tool 9 Open Source

2010 Study Tools

4

Study Methodology
Overview

Analyze test cases with a tool in default
configuration
Convert the results into a CAS-defined, common
CSV format
Score results

Mark results relevant to test case as True Positives or
False Positives
Add False Negatives

Calculate statistics for each weakness class

5

Differences from
SATE/SAMATE

We run each tool, not the tool vendor
We use synthetic test cases instead of natural code
We know where all the flawed and non-flawed
constructs are
We know exactly what type of flaw and non-flaw
each construct represents

6

Test Cases

7

CAS Test Cases

Test cases are artificial pieces of code for testing
software analysis tools
Each test case contains:

One flawed construct
One or more non-
construct

As much as possible, performs the same function as the flawed
construct

Test cases cover:
C/C++
Java

8

Advantages of Test
Cases

Control over the breadth of flaws and non-flaws
covered

Control over where flaws and non-flaws occur

Allows for automated scoring of results
Control over data and control flows used

Test cases for many flaw types cover

Simplest form of flaw
18 different control flow patterns
22 different data flow patterns

9

Limitations of Test
Cases

Simpler than natural code

natural code
All flaws represented equally

Each flaw appears one time in test cases, regardless of
how common the flaw is in natural code

Ratio of flaws and non-flaws likely much different
than in natural code

1 or 2 non-flaw(s) for each flaw in the test cases
In natural code, non-flaws are likely much more
common than flaws

10

Test Case Scope

Test cases are currently focused on:
Functions available on the underlying platform

Not the use of third-party libraries or frameworks
Platform-neutral and Windows-specific functions

No test cases specific to Linux, Mac OS, etc.
C language vs. C++

C++ is only used for flaw types that require it (such as leaks of

Java applications and Servlets
No Applets or Java Server Pages (JSPs)

11

2010 Test Case
Statistics

 CWEs
Covered

Flaw
Types

Test
Cases

Lines of
Code

C/C++ 116 1,432 45,324 6,338,548
Java 106 527 13,801 3,238,667

All Test Cases 177 1,959 59,125 9,577,215

12

Weakness Classes

Weakness Class Example Weakness (CWE) C/C++ Test
Cases

Java Test
Cases

Authentication and Access Control
CWE-620: Unverified Password
Change

604 422

Buffer Handling
CWE-121: Stack-based Buffer
Overflow

11,386 -

Code Quality CWE-561: Dead Code 440 410
Control Flow Management CWE-362: Race Condition 579 509
Encryption and Randomness CWE-328: Reversible One-Way Hash 298 950
Error Handling CWE-252: Unchecked Return Value 2,790 437
File Handling CWE-23: Relative Path Traversal 2,520 718

Information Leaks
CWE-534: Information Leak Through
Debug Log Files

283 468

Initialization and Shutdown CWE-415: Double Free 9,894 450
Injection CWE-89: SQL Injection 6,882 5,970
Miscellaneous CWE-480: Use of Incorrect Operator 2,304 222
Number Handling CWE-369: Divide by Zero 6,017 2,802
Pointer and Reference Handling CWE-476: Null Pointer Dereference 1,308 425

13

Analysis Metrics

14

Precision, Recall,
and F-Score

CAS uses concepts from Information Retrieval in
examination of static analysis tool results
Precision

Fraction of flaw reports from tool that are actual flaws

Recall

Fraction of flaws in code that are correctly reported

F-Score
Harmonic mean of Precision and Recall

15

Problem

Precision, Recall, and F-
tell whole story

grep-
Recall: 1
Precision: 0.5
F-Score: 0.67

This is a limitation of test cases
Only 1 or 2 non-flaws for each flaw

16

Discrimination

Correctly reported the flaw
Did not incorrectly report any false positives

Each tool gets 0 or 1 discrimination(s) for each test
case

17

Discrimination Rate

Discrimination Rate is the fraction of test cases
where a tool reported discriminations

Rate and Recall

necessarily toward Discrimination Rate

Flaws
tionsD iscriminaRatetionD iscrimina

#
#

18

2010 Study Conclusions

19

2010 Study
Conclusions

Tools are not interchangeable
Tools perform differently on different languages
Complementary tools can be combined to achieve
better results
Each tool failed to report a significant portion of the
flaws studied

Average tool covered 8 of 13 Weakness Classes
Average tool covered 22% of flaws in Weakness
Classes covered

20

Flaws Reported
2010

C/C++ Test Cases (2010) Java Test Cases (2010)

21

Flaws Reported
C/C++ 2009 vs. 2010

C/C++ Test Cases (2009) C/C++ Test Cases (2010)

22

207 Test Cases
207 Flaw Types
No data or control flows

45,286 Test Cases
1,432 Flaw Types
Various data and control flows

Flaws Reported
Java 2009 vs. 2010

Java Test Cases (2009) Java Test Cases (2010)

23

174 Test Cases
174 Flaw Types
No data or control flows

13,801 Test Cases
527 Flaw Types
Various data and control flows

Flaws Discriminated
2010

C/C++ Test Cases (2010) Java Test Cases (2010)

24

Flaws Reported and
Disc. C/C++ 2010

25

Flaws Reported and
Disc. Java 2010

26

Open Source vs.
Commercial Tools

Open source C/C++ tool was limited overall
Reported the flaws in a below-average fraction of the
test cases in every Weakness Class it covered
Reported an above-average number of False Positives
on five of the seven Weakness Classes it covered

27

Open Source vs.
Commercial Tools

Two open source Java tools studied had mixed
results on the Weakness Classes they covered

In three Weakness Classes, an open source tool was
the strongest of all tools (based on F-Score)

Control Flow Management
Error Handling

In four Weakness Classes, at least one open source
tool was stronger than at least one commercial tool

Information Leaks and Shutdown
Injection

In two Weakness Classes, the open source tools were
the weakest tools

Auth. and Access Control and Reference Handling
28

2011 Study Plans

29

Study Plans for 2011

Update and expand Test Cases based on
community feedback
Soliciting input from vendors on configuration
settings to use with their tools
Considering additional tools
Study scheduled to start in October 2011

30

Questions?

31

CAS Static Analysis
Tool Study Overview

Center for Assured Software
National Security Agency

cas@nsa.gov

