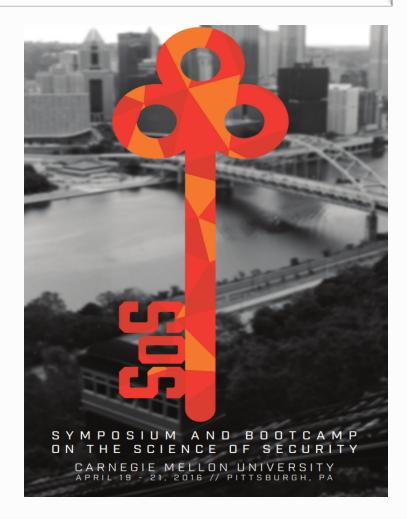


SoS Lablets

The Carnegie Mellon Science of Security Lablet


Bill Scherlis (PI) Quarterly Meeting Pittsburgh 10-11 July 2017

School of Computer Science

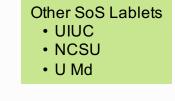
The CMU Science of Security (SoS) Lablet

- The team
- Mission
- Significance of SoS
- Hard Problems
- Synergetic benefits
- CMU project portfolio

The team

The CMU research team

- David Garlan
- Anupam Datta
 Lorrie Cranor
- Andre Platzer
- Alessandro Acquisti
 Rahul Telang
- Christian Kästner


- Travis Breaux co-PI
- Limin Jia
- Bill Scherlis PI

- Jürgen Pfeffer
- Jonathan Aldrich co-PI
- Bradley Schmerl
- Nicolas Christin
- More than seven academic departments, three colleges
- Diverse disciplines: Mathematical logics and models, software architectures/frameworks, graph-theoretic network analytics, human subjects studies, CPS, policy modeling, software devt and evaluation

Partner universities

- Cornell (Dexter Kozen)
- GMU (Sam Malek)
- UC Berkeley (Serge Egelman)
- U Pittsburgh (Scott Beach)
- Wayne State (Marwan Abi-Antoun),
- U Nebraska (Matt Dwyer, Witawas Srisa-an)
- UTSA (Jianwei Niu)

- PhD and MS students
 - 16 PhD and 2 MS in multiple depts
- REU undergraduate students
 - Approx 8 (REU is NSF funded)

Mission concept

(1) Advance **identified specific areas** of cybersecurity research

- Scalability and composability
- Policy-governed secure collaboration
- Predictive security metrics
- Resilient architectures
- Human behavior

Not comprehensive coverage of cybersecurity topics

- (2) Advance the **scientific coherence** of the multidisciplinary body of cybersecurity technical results
 - Methods
 - Validation
 - Productivity

(3) Engage and broaden the cybersecurity **technical community**

- Facilitate community and educational engagement
- Workshops and conference events: HotSoS conference

Significance of **SoS**

- Premises security **operating** environment
 - Growth in urgency and criticality of cybersecurity
 - Common vulnerable tech base
 - The "natural world" of cybersecurity is unusual
 - Synthetic terrain
 - Systems we build but do not understand
 - Presence of active adversaries
 - Rapid pace of change of systems and operating environment and threat
 - Multidisciplinary character of research necessary to advance capability
 - Diverse technical domains:
 - Biometrics, human behavior, crypto math, protocol analysis, language foundations, logics and models, systems architecture, threat analysis, cyber-physical models, networking, hardware, API design, measurement,...
 - Adversary escapes the abstractions: We must continually broaden the scope of our models – and make side channels more expensive
 - Diverse scientific approaches underlie the research
 - Mathematically based theory
 - Data-driven empirical studies
 - Empirical behavioral studies: observational and interventional

Significance of **SoS**

• Premises – security **engineering** environment

- Challenge to interweave science and engineering
 - Foundations for engineering practice
 - Techniques to assess and understand what we are building
- Diverse points of potential intervention to improve security
 - Requirements, architecture, development, operations, sustainment
 - Evaluation and measurement
- Complexity and interconnection in systems and organizations
 - Rich and diverse supply chains
 - Socio-technical ecosystems
 - Framework-and-app models
 - Payloads and platforms
 - Dynamism, AI-based systems, IoT and new CPS models, etc.
- Product families in time and space
 - Configurations (e.g., Linux on Android)
 - Ongoing evolution and need to rapid recertification
- Rapid pace of change in systems
 - Rapid iteration in response to mission, technology, threat
 - Broad recognition of need for iteration

Consequence: Three part approach to SoS

- 1. Address the most challenging **Hard Problem** areas
- 2. Advance the process and methods by which science is done and the engineering that builds on it
- *3.* Engage with the broader research and technical **community** to address these goals

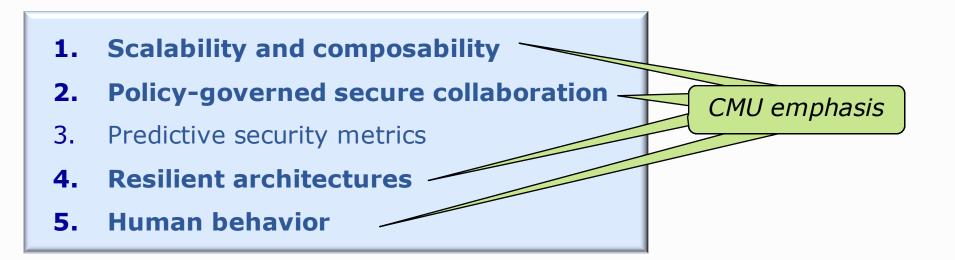
Three part approach to SoS

1. Address the most challenging Hard Problem areas

- We focus primarily on HP 1 and 5
- Strong activity related to HP 2 and 4.
- (Details in HP Report)

Opportunities:

- Obtaining and benefitting from common framing
- Identify transitions already possible to engineering practice
 - SoS then supports continued refinement of these


Risks

- Uncertainty regarding extent of benefit from common framing
- Difficulty of achieving common framing

Five Hard Problems in the Science of Security

Not comprehensive:

Focus on the engineering and evaluation of systems

Selection criteria for the problems

- High level of technical challenge
- Significant operational value
- Likelihood of benefiting from emphasis on scientific research methods and improved measurement capabilities

School of Computer Science

Three part approach to SoS

2. Advance the process and methods by which science is done

- Explicit focus on methods
- Synergies in the Lablet approach
- Towards a common base for analysis and engineering

Opportunity: Methods and systematization

- Definition and validation of diverse "methods"
- Systematization of practices through study teams
 - (Cf. HP report process)
- Development of links with engineering practice
 - Analysis and synthesis

Risks: Management by the numbers

• Light under lamppost: TRLs, scientometrics, etc.

Synergies in the Lablet approach

- Data meets models
 - E.g., social network structures, developer usability, end-user usability, API complexity
- Semantics-based approaches meet real engineered systems
 - E.g., hypervisors, Web apps, framework+apps, large components
- Empirical science (data, people) meets mathematical reasoning
 - E.g., language design, API design, model design, tool design

Three part approach to SoS

3. Engage with the broader research and technical community to address these goals

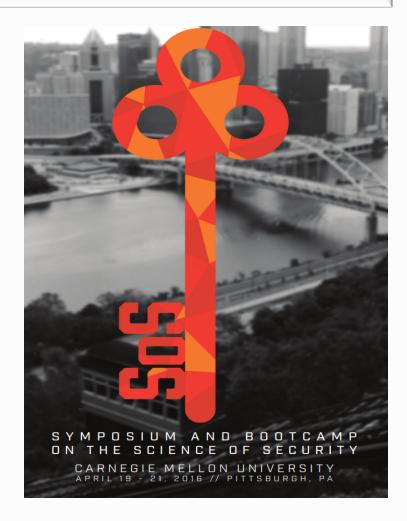
- HotSoS 2016 Conference
- Conference on Safety and Control for AI (with OSTP)
- Workshop on Safety and Control for AI (with Lablet)

Opportunity: More active/dedicated community processes

- Connect more explicitly with engineering practice
 - Identify and test engineering principles
- Framing the Hard Problems
- Identification of common elements: methods, features, etc.

Risks:

• Failure to transition into engineering/evaluation practice


SYMPOSIUM AND BOOTCAMP ON THE SCIENCE OF SECURITY

CICPS Published by ACM

CARNEGIE MELLON UNIVERSITY APRIL 19 - 21, 2016 // PITTSBURGH, PA

The CMU Science of Security (SoS) Lablet

- The team
- Mission
- Significance of SoS
- Hard Problems
- Synergetic benefits
- CMU project portfolio

CMU Projects (9 projects)

	Com	Pol	Met	Res	Hum		
1	х		х	х		Aldrich, Garlan, Malek (GMU), Abi-Antoun (Wayne State)	Frameworks, APIs, and Composable Security Models
2	Х		х			Kästner	Limiting Recertification in Highly Configurable Systems: Interactions and Isolation among Configuration Options
3	х			х		Platzer, Kozen (Cornell)	Security Reasoning for Distributed Systems with Uncertainties
4	х	х				Datta, Jia	Compositional security
6	х				х	Aldrich, Sunshine	A Language and Framework for Development of Secure Mobile Applications
7	х		х	х		Garlan, Schmerl	Multi-model run-time security analysis
8	х				Х	Aldrich, Dwyer (Nebraska)	Race Vulnerability Study and Hybrid Race Detection
9	х	х			Х	Breaux, Niu (UTSA)	Usable Formal Methods for the Design and Composition of Security and Privacy Policies
10			х		Х	Cranor, Acquisti, Christin, Telang, Egelman (Berkeley), Beach (U Pitt)	Understanding user behavior when security is a secondary task

The Carley (#11) and Harper (#5) projects are concluded.

2: Highly configurable systems

• Leader: Christian Kästner, (Jürgen Pfeffer)

- HPs: Composability. Metrics.
- Scope
 - Scalability of assurances for *highly configurable* systems
 - Exponential configuration spaces
 - Massive reuse of third-party libraries that evolve independently
 - Compositional analysis of configuration options enables scaled analysis
 - How are options implemented? How do they interact?
 - Support for modular and timely recertification of judgments
 - Support change and variation
- Recent example results
 - Safe updates for server-side JS (node.js)
 - Static analysis to assure the absence of certain malicious package updates in *npm* packages
 - Dynamic sandboxing of JS/node.js packages
 - SME study of software certification (CC, DO-178c)
 - (Finalist, ICSE section ACM student research competition)

7: Multi-model runtime analysis

- Leaders: David Garlan, Bradley Schmerl
- HPs: Resiliency. Composability. Metrics.
- Scope
 - Resiliency architecture
 - Attack scenario based on Target breach and related APT analysis
 - Testbed support to explore resiliency in this kind of setting
 - Defense tactics in the presence of threats
 - Anomaly detection algorithms on traces
 - Precision/recall analyses
 - Effectiveness, signal to noise, architecture size effect, abstraction function effect
 - Flows of information in socio-technical networks and in social networks
- Example results
 - Architecture evaluation techniques
 - Architecture generation (large scale) and resiliency scenario evaluation

1: Science of secure frameworks

- Leaders: Jonathan Aldrich, David Garlan, Sam Malek (UCI), Marwan Abi-Antoun (Wayne State)
- HPs: Composability. Resiliency. Metrics.
- Scope
 - Security assessment of software in a framework-based ecosystem (such as Android)
 - Uncertainty-aware decision making for resilient responses
- Example results
 - *DelDroid*: Analysis to automatically extract the least privileges required by each component in a program (ICSA 2017)
 - Comprehensive taxonomy of analytic techniques for Android software (IEEE TSE June 2017)
 - Savasana: Analysis to identify inter-/intra-component dependencies to ensure safe adaptation in a complex ecosystem (ACM TOSEM May 2017)
 - Architecture extraction for Android systems using semi-automated analysis

Carnegie <u>Mellon</u>

3: Security in distributed systems with uncertainty

• Leaders: Andre Platzer, Dexter Kozen (Cornell)

• HPs: Composability. Resiliency.

• Scope

- Apply optimization techniques to security planning, compromising optimality for rapid solution
 - Application to anomaly detection, policy synthesis
 - Policy synthesis: How to adapt/escalate access control in response to anomalous system behavior
 - Builds on earlier work on #E-SAT solving
 - Based on Markov decision processes
- Application (ongoing) is the 4-dimensional plane collision avoidance problem (FAA)

• Example results

 Diverse technical results enabling large anomaly detection and security policy synthesis problems (thesis near completion)

4: Secure composition of systems and policies

- Leaders: Anupam Datta, Limin Jia, Amit Vasudevan, Sagar Chaki (SEI), Petros Maniatis (Google)
- HPs: Composability. Resiliency.
- Scope
 - Secure-object abstractions verifiable in low-level systems software
 - C99 and assembly using **UberSpark** models and analyses.
 - Exploit CompCert stack to create executable binaries
 - Enables "interface confinement" for analysis of adversary code
 - Apply to assuring security invariants in a performant hypervisor
- Example results
 - Rigorous integration of UberSpark, CASM (verifiable assembly code), CompCert to achieve verified properties in binaries
 - Architecture concepts to support application of UberSpark and its abstractions to heterogeneous systems (IoT, mobile, etc.)
 - <u>http://uberspark.org</u>

10: Security Behavior Observatory (SBO), 1 of 2

- Leaders: A Acquisti, LF Cranor, N Christin, R Telang, S Egelman (Berkeley)
- HPs: Humans. Metrics.
- Scope
 - Observe behavior of end users "in the wild" rather than in lab settings
 - Focus on security- and privacy-related activity

• Data collection:

- >2 years of security and privacy behavior data from SBO human participants (~500 total, ~200 currently active)
- Survey data from ~500 SBO participants
- Several months of password behavior data for more than 200 enrolled human participants

10: Security Behavior Observatory (SBO), 2 of 2

• Example results

 Users who claim to be more engaged with security practices *do not* necessarily have more secure outcomes

Assessments

- Susceptibility of users to phishing attacks
 - Based on signal detection theory and risk homeostasis theory
- Assessment of privacy-related behavior in browsing and shopping
 - Use of privacy plugins, incognito mode, etc.
- Assessment of password-creation behavior, including degree of reuse
- Seemingly effective compare-and-select crypto-key fingerprint representations (visual comparisons to thwart MITM) are generally *not* effective (CHI 2017)
- There are patterns of password reuse, and it is endemic (see tech talk)

10: Race vulnerabilities

• Leaders: Jonathan Aldrich, Josh Sunshine, Witawas Srisa-an (U Nebraska Lincoln)

- HPs: Composition. Humans.
- Scope
 - Analysis of concurrent systems to detect race-related security vulnerabilities
 - Techniques for preventing race-related vulnerabilities through secure-byconstruction development techniques and tools
- Example results
 - Glacier: a type system for enforcing immutability in Java. We report the first user studies demonstrating that a type system helps developers avoid security issues and implement immutability correctly, with applications to race vulnerability mitigation (ICSE 2017a)
 - Jitana: an efficient and scalable approach to analyzing whether inter-app communication in Android apps follows security constraints (ICSE 2017b)
 - SimExplorer: a testing framework that better controls nondeterministic applications in order to more effectively find concurrency faults (J. Software: Testing, Verification, and Reliability)

8. Framework for secure mobile applications

• HPs: Composition. Humans.

- Composition: Composable techniques for secure-by-construction software
- Humans: Influencing developer behavior in constructing secure code
- Scope
 - Programming languages, type systems, and software frameworks that enable construction of mobile applications with known security properties

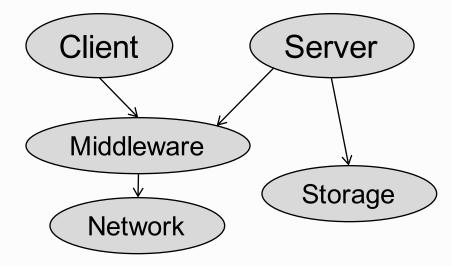
• Example results

- A new formal model of authority in object capability systems, and a module system that facilitates capability-based reasoning about resource use in software systems (ECOOP 2017)
- Integration of type safety into structure editors, enhancing editor services that can facilitate built-in security properties (POPL 2017, SNAPL 2017)

8. Modules as Capabilities for Resource Control

out

JSON over SSI


Conceptual Architecture [SG94]

How can an architect maintain effective control over system architecture? Client

• In the example, what if the Client opens *other*, unsecured, connections?

Solution: resources as capabilities

- Capability: an unforgeable token controlling access to a resource [DV66]
- No ambient capabilities
 - By default, Client and Server have no network capability
- Capability delegation
 - Explicitly pass capabilities to modules, such as Middleware, that need them

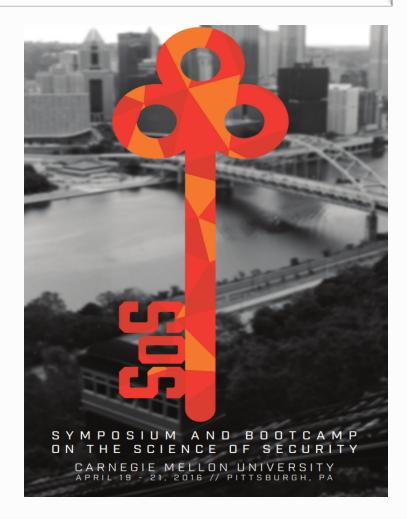
In

Server

Capability / Module Structure

School of Computer Science

9. Formal methods for composing policies


• Leaders: Travis Breaux, Jianwei Niu (UTSA)

- HPs: Metrics. Humans.
 - Metrics: Empirical privacy risk score; iterative, measured security improvement framework
 - Humans: Influencing developer behavior in constructing secure code
- Scope
 - Facilitate assessment of consistency of privacy and security policies with actual app behaviors
- Example results
 - Privacy risk predicted by information type, user demographics (PLSC'17)
 - Privacy policy information type ontology (RE'17)
 - Framework to estimate security requirements improvement (RE'17)
 - Mapping of policy terminology to API functions (ICSE'16)
 - Case study of 501 top Android apps discovered 63 policy violations
 - <u>http://polidroid.org/</u>
 - Tools for developers

The CMU Science of Security (SoS) Lablet

- The team
- Mission
- Significance of SoS
- Hard Problems
- Synergetic benefits
- CMU project portfolio

