
School of Computer Science

The Carnegie Mellon
Science of Security Lablet

Bill Scherlis (PI)
Quarterly Meeting

Pittsburgh
10-11 July 2017

SoS
Lablets

School of Computer Science

The CMU Science of Security (SoS) Lablet

• The team

• Mission

• Significance of SoS

• Hard Problems

• Synergetic benefits

• CMU project portfolio

2

School of Computer Science

The team

• The CMU research team
§ David Garlan • Travis Breaux – co-PI • Jürgen Pfeffer
§ Anupam Datta • Lorrie Cranor • Jonathan Aldrich - co-PI
§ Andre Platzer • Limin Jia • Bradley Schmerl
§ Alessandro Acquisti • Rahul Telang • Nicolas Christin
§ Christian Kästner • Bill Scherlis - PI

§ More than seven academic departments, three colleges

§ Diverse disciplines: Mathematical logics and models, software
architectures/frameworks, graph-theoretic network analytics, human
subjects studies, CPS, policy modeling, software devt and evaluation

• Partner universities
§ Cornell (Dexter Kozen)
§ GMU (Sam Malek)
§ UC Berkeley (Serge Egelman)
§ U Pittsburgh (Scott Beach)
§ Wayne State (Marwan Abi-Antoun),
§ U Nebraska (Matt Dwyer, Witawas Srisa-an)
§ UTSA (Jianwei Niu)

3

Other SoS Lablets
• UIUC
• NCSU
• U Md

• PhD and MS students
§ 16 PhD and 2 MS in multiple depts

• REU undergraduate students
§ Approx 8 (REU is NSF funded)

School of Computer Science

Mission concept

(1) Advance identified specific areas of cybersecurity research
• Scalability and composability
• Policy-governed secure collaboration
• Predictive security metrics
• Resilient architectures
• Human behavior

(2) Advance the scientific coherence of the multidisciplinary
body of cybersecurity technical results

• Methods
• Validation
• Productivity

(3) Engage and broaden the cybersecurity technical community
• Facilitate community and educational engagement
• Workshops and conference events: HotSoS conference

4

Not comprehensive coverage
of cybersecurity topics

School of Computer Science

Significance of SoS

5

• Premises – security operating environment

§ Growth in urgency and criticality of cybersecurity
• Common vulnerable tech base

§ The “natural world” of cybersecurity is unusual
• Synthetic terrain
• Systems we build but do not understand
• Presence of active adversaries
• Rapid pace of change of systems and operating environment and threat

§ Multidisciplinary character of research necessary to advance capability
• Diverse technical domains:

• Biometrics, human behavior, crypto math, protocol analysis, language
foundations, logics and models, systems architecture, threat analysis,
cyber-physical models, networking, hardware, API design, measurement,…

• Adversary escapes the abstractions: We must continually broaden the scope of
our models – and make side channels more expensive

§ Diverse scientific approaches underlie the research
• Mathematically based theory
• Data-driven empirical studies
• Empirical behavioral studies: observational and interventional

School of Computer Science

Significance of SoS

• Premises – security engineering environment

§ Challenge to interweave science and engineering
• Foundations for engineering practice
• Techniques to assess and understand what we are building

§ Diverse points of potential intervention to improve security
• Requirements, architecture, development, operations, sustainment
• Evaluation and measurement

§ Complexity and interconnection in systems and organizations
• Rich and diverse supply chains
• Socio-technical ecosystems

• Framework-and-app models
• Payloads and platforms

• Dynamism, AI-based systems, IoT and new CPS models, etc.

§ Product families – in time and space
• Configurations (e.g., Linux on Android)
• Ongoing evolution and need to rapid recertification

§ Rapid pace of change in systems
• Rapid iteration in response to mission, technology, threat
• Broad recognition of need for iteration

6

School of Computer Science

Consequence: Three part approach to SoS

1. Address the most challenging Hard Problem
areas

2. Advance the process and methods by which
science is done and the engineering that builds on it

3. Engage with the broader research and technical
community to address these goals

7

School of Computer Science

Three part approach to SoS

1. Address the most challenging Hard Problem areas

§ We focus primarily on HP 1 and 5
§ Strong activity related to HP 2 and 4.
§ (Details in HP Report)

Opportunities:
• Obtaining and benefitting from common framing
• Identify transitions already possible to engineering practice

• SoS then supports continued refinement of these

Risks
• Uncertainty regarding extent of benefit from common framing
• Difficulty of achieving common framing

8

School of Computer Science

Five Hard Problems in the Science of Security

1. Scalability and composability

2. Policy-governed secure collaboration

3. Predictive security metrics

4. Resilient architectures

5. Human behavior

Selection criteria for the problems
• High level of technical challenge

• Significant operational value

• Likelihood of benefiting from emphasis on
scientific research methods and improved
measurement capabilities

Not comprehensive:

Focus on the engineering
and evaluation of systems

CMU emphasisCMU emphasisCMU emphasisCMU emphasisCMU emphasisCMU emphasis

School of Computer Science

Three part approach to SoS

2. Advance the process and methods by which
science is done

§ Explicit focus on methods
§ Synergies in the Lablet approach
§ Towards a common base for analysis and engineering

Opportunity: Methods and systematization
• Definition and validation of diverse “methods”
• Systematization of practices through study teams

• (Cf. HP report process)
• Development of links with engineering practice

• Analysis and synthesis

Risks: Management by the numbers
• Light under lamppost: TRLs, scientometrics, etc.

10

School of Computer Science

Synergies in the Lablet approach

• Data meets models
§ E.g., social network structures, developer usability, end-user usability,

API complexity

• Semantics-based approaches meet real engineered systems
§ E.g., hypervisors, Web apps, framework+apps, large components

• Empirical science (data, people) meets mathematical reasoning
§ E.g., language design, API design, model design, tool design

11

School of Computer Science

Three part approach to SoS

3. Engage with the broader research and technical
community to address these goals

§ HotSoS 2016 Conference
§ Conference on Safety and Control for AI (with OSTP)
§ Workshop on Safety and Control for AI (with Lablet)

Opportunity: More active/dedicated community processes
• Connect more explicitly with engineering practice

• Identify and test engineering principles
• Framing the Hard Problems
• Identification of common elements: methods, features, etc.

Risks:
• Failure to transition into engineering/evaluation practice

12

School of Computer Science

The CMU Science of Security (SoS) Lablet

• The team

• Mission

• Significance of SoS

• Hard Problems

• Synergetic benefits

• CMU project portfolio

14

School of Computer Science

CMU Projects (9 projects)

15

C
om Po

l

M
et

R
es

H
um

1 X X X Aldrich, Garlan, Malek (GMU),
Abi-Antoun (Wayne State) Frameworks, APIs, and Composable Security Models

2 X X Kästner Limiting Recertification in Highly Configurable Systems:
Interactions and Isolation among Configuration Options

3 X X Platzer, Kozen (Cornell) Security Reasoning for Distributed Systems with
Uncertainties

4 X X Datta, Jia Compositional security

6 X X Aldrich, Sunshine A Language and Framework for Development of Secure
Mobile Applications

7 X X X Garlan, Schmerl Multi-model run-time security analysis

8 X X Aldrich, Dwyer (Nebraska) Race Vulnerability Study and Hybrid Race Detection

9 X X X Breaux, Niu (UTSA) Usable Formal Methods for the Design and Composition
of Security and Privacy Policies

10 X X Cranor, Acquisti, Christin, Telang,
Egelman (Berkeley), Beach (U Pitt)

Understanding user behavior when security is a
secondary task

The Carley (#11) and Harper (#5) projects are concluded.

School of Computer Science

2: Highly configurable systems

16

• Leader: Christian Kästner, (Jürgen Pfeffer)

• HPs: Composability. Metrics.

• Scope
§ Scalability of assurances for highly configurable systems

• Exponential configuration spaces
• Massive reuse of third-party libraries that evolve independently

§ Compositional analysis of configuration options enables scaled analysis
• How are options implemented? How do they interact?

§ Support for modular and timely recertification of judgments
• Support change and variation

• Recent example results
§ Safe updates for server-side JS (node.js)

• Static analysis to assure the absence of certain malicious package
updates in npm packages

• Dynamic sandboxing of JS/node.js packages
§ SME study of software certification (CC, DO-178c)

• (Finalist, ICSE section ACM student research competition)

School of Computer Science

7: Multi-model runtime analysis

17

• Leaders: David Garlan, Bradley Schmerl

• HPs: Resiliency. Composability. Metrics.

• Scope
§ Resiliency architecture

• Attack scenario based on Target breach and related APT analysis
• Testbed support to explore resiliency in this kind of setting
• Defense tactics in the presence of threats

§ Anomaly detection algorithms on traces
• Precision/recall analyses

• Effectiveness, signal to noise, architecture size effect, abstraction
function effect

§ Flows of information in socio-technical networks and in social
networks

• Example results
§ Architecture evaluation techniques
§ Architecture generation (large scale) and resiliency scenario evaluation

School of Computer Science

1: Science of secure frameworks

18

• Leaders: Jonathan Aldrich, David Garlan, Sam Malek (UCI),
Marwan Abi-Antoun (Wayne State)

• HPs: Composability. Resiliency. Metrics.

• Scope
§ Security assessment of software in a framework-based ecosystem (such

as Android)
§ Uncertainty-aware decision making for resilient responses

• Example results
§ DelDroid: Analysis to automatically extract the least privileges required

by each component in a program (ICSA 2017)
§ Comprehensive taxonomy of analytic techniques for Android software

(IEEE TSE June 2017)
§ Savasana: Analysis to identify inter-/intra-component dependencies to

ensure safe adaptation in a complex ecosystem (ACM TOSEM May 2017)
§ Architecture extraction for Android systems using semi-automated

analysis

School of Computer Science

3: Security in distributed systems with uncertainty

19

• Leaders: Andre Platzer, Dexter Kozen (Cornell)

• HPs: Composability. Resiliency.

• Scope
§ Apply optimization techniques to security planning, compromising

optimality for rapid solution
• Application to anomaly detection, policy synthesis

• Policy synthesis: How to adapt/escalate access control in response
to anomalous system behavior

• Builds on earlier work on #E-SAT solving
• Based on Markov decision processes

§ Application (ongoing) is the 4-dimensional plane collision avoidance
problem (FAA)

• Example results
§ Diverse technical results enabling large anomaly detection and security

policy synthesis problems (thesis near completion)

School of Computer Science

4: Secure composition of systems and policies

20

• Leaders: Anupam Datta, Limin Jia, Amit Vasudevan, Sagar
Chaki (SEI), Petros Maniatis (Google)

• HPs: Composability. Resiliency.

• Scope
§ Secure-object abstractions verifiable in low-level systems software

• C99 and assembly using UberSpark models and analyses.
• Exploit CompCert stack to create executable binaries
• Enables “interface confinement” for analysis of adversary code

§ Apply to assuring security invariants in a performant hypervisor

• Example results
§ Rigorous integration of UberSpark, CASM (verifiable assembly code),

CompCert to achieve verified properties in binaries
§ Architecture concepts to support application of UberSpark and its

abstractions to heterogeneous systems (IoT, mobile, etc.)
§ http://uberspark.org

School of Computer Science

10: Security Behavior Observatory (SBO), 1 of 2

21

• Leaders: A Acquisti, LF Cranor, N Christin, R Telang, S
Egelman (Berkeley)

• HPs: Humans. Metrics.

• Scope
§ Observe behavior of end users “in the wild” rather than in lab settings

• Focus on security- and privacy-related activity

• Data collection:
• >2 years of security and privacy behavior data from SBO human

participants (~500 total, ~200 currently active)
• Survey data from ~500 SBO participants
• Several months of password behavior data for more than 200 enrolled

human participants

School of Computer Science

10: Security Behavior Observatory (SBO), 2 of 2

22

• Example results
§ Users who claim to be more engaged with security practices do not

necessarily have more secure outcomes

§ Assessments
• Susceptibility of users to phishing attacks

• Based on signal detection theory and risk homeostasis theory
• Assessment of privacy-related behavior in browsing and shopping

• Use of privacy plugins, incognito mode, etc.
• Assessment of password-creation behavior, including degree of reuse

§ Seemingly effective compare-and-select crypto-key fingerprint
representations (visual comparisons to thwart MITM) are generally not
effective (CHI 2017)

§ There are patterns of password reuse, and it is endemic (see tech talk)

School of Computer Science

10: Race vulnerabilities

23

• Leaders: Jonathan Aldrich, Josh Sunshine, Witawas Srisa-an
(U Nebraska Lincoln)

• HPs: Composition. Humans.

• Scope
§ Analysis of concurrent systems to detect race-related security vulnerabilities
§ Techniques for preventing race-related vulnerabilities through secure-by-

construction development techniques and tools

• Example results
§ Glacier: a type system for enforcing immutability in Java. We report the

first user studies demonstrating that a type system helps developers avoid
security issues and implement immutability correctly, with applications to
race vulnerability mitigation (ICSE 2017a)

§ Jitana: an efficient and scalable approach to analyzing whether inter-app
communication in Android apps follows security constraints (ICSE 2017b)

§ SimExplorer: a testing framework that better controls nondeterminstic
applications in order to more effectively find concurrency faults
(J. Software: Testing, Verification, and Reliability)

School of Computer Science

8. Framework for secure mobile applications

24

• HPs: Composition. Humans.
§ Composition: Composable techniques for secure-by-construction software
§ Humans: Influencing developer behavior in constructing secure code

• Scope
§ Programming languages, type systems, and software frameworks that

enable construction of mobile applications with known security
properties

• Example results
§ A new formal model of authority in object capability systems, and a

module system that facilitates capability-based reasoning about resource
use in software systems (ECOOP 2017)

§ Integration of type safety into structure editors, enhancing editor services
that can facilitate built-in security properties (POPL 2017, SNAPL 2017)

School of Computer Science

8. Modules as Capabilities for Resource Control

How can an architect maintain
effective control over
system architecture?
• In the example, what if the Client

opens other, unsecured, connections?

Solution: resources as capabilities
• Capability: an unforgeable token

controlling access to a resource
[DV66]

• No ambient capabilities
§ By default, Client and Server have no

network capability

• Capability delegation
§ Explicitly pass capabilities to modules,

such as Middleware, that need them

Client Server
out in

JSON over SSL DB

Conceptual Architecture [SG94]

Capability / Module Structure

Client Server

Middleware

Network
Storage

School of Computer Science

9. Formal methods for composing policies

26

• Leaders: Travis Breaux, Jianwei Niu (UTSA)

• HPs: Metrics. Humans.
§ Metrics: Empirical privacy risk score; iterative, measured security

improvement framework
§ Humans: Influencing developer behavior in constructing secure code

• Scope
§ Facilitate assessment of consistency of privacy and security policies with

actual app behaviors

• Example results
§ Privacy risk predicted by information type, user demographics (PLSC’17)
§ Privacy policy information type ontology (RE’17)
§ Framework to estimate security requirements improvement (RE’17)
§ Mapping of policy terminology to API functions (ICSE’16)
§ Case study of 501 top Android apps – discovered 63 policy violations
§ http://polidroid.org/

• Tools for developers

School of Computer Science

The CMU Science of Security (SoS) Lablet

• The team

• Mission

• Significance of SoS

• Hard Problems

• Synergetic benefits

• CMU project portfolio

27

