ITLU UNOIS FDU

WiP: A Model-Based Approach for Quantitative Decision-Making in Cybersecurity Incident Response

INFORMATIONTRUST INSTITUTE

Cybersecurity incident response (CSIR)

Network breaches are **inevitable**

"widespread recognition that some of these cybersecurity (cyber) events cannot be stopped." [NIST2016]

[Ponnemon2014] Cyber Security Incident Response: Are we as prepared as we think?
[NIST2016] SP 800-184 Guide for Cybersecurity Event Recovery..
[Onwubiko2020] SOTER: A Playbook for Cybersecurity Incident Management, *Transactions on Engineering Management*.
[Smith2021] The Agile Incident Response for Industrial Control Systems (AIR4ICS) framework, *Computer & Security*.
[Spring2021] Review of Human Decision-making during Computer Security Incident Analysis. *Digital Threats: Research and Practice*.
[MarketWatch] https://www.marketwatch.com/press-release/incident-response-market-size-volume-share-demand-growth-business-opportunity-by-2023-trending-report-2022-01-10, *Last access: March 23*, 2022

Cybersecurity incident response (CSIR)

Network breaches are **inevitable**

"widespread recognition that some of these cybersecurity (cyber) events cannot be stopped." [NIST2016]

Incident response helps control the damage after the breach

68% agreed that "the **best thing that their organizations could do** to mitigate future breaches is to **improve their incident response capabilities**." [Ponemon2014]

"global incident response market size to grow from **USD 13.38 billion** in 2018 to **USD 33.76 billion** by 2023, at a Compound Annual Growth Rate (CAGR) of **20.3%**" [MarketWatch]

[Ponemon2014] Cyber Security Incident Response: Are we as prepared as we think?
[NIST2016] SP 800-184 Guide for Cybersecurity Event Recovery..
[Onwubiko2020] SOTER: A Playbook for Cybersecurity Incident Management, *Transactions on Engineering Management*.
[Smith2021] The Agile Incident Response for Industrial Control Systems (AIR4ICS) framework, *Computer & Security*.
[Spring2021] Review of Human Decision-making during Computer Security Incident Analysis. *Digital Threats: Research and Practice*.
[MarketWatch] https://www.marketwatch.com/press-release/incident-response-market-size-volume-share-demand-growth-business-opportunity-by-2023-trending-report-2022-01-10, *Last access: March 23*, 2022

Cybersecurity incident response (CSIR)

Network breaches are **inevitable**

"widespread recognition that some of these cybersecurity (cyber) events cannot be stopped." [NIST2016]

Incident response helps **control the damage** after the breach

68% agreed that "the **best thing that their organizations could do** to mitigate future breaches is to **improve their incident response capabilities**." [Ponemon2014]

"global incident response market size to grow from **USD 13.38 billion** in 2018 to **USD 33.76 billion** by 2023, at a Compound Annual Growth Rate (CAGR) of **20.3%**" [MarketWatch]

Incident response relies on **playbooks**

" incomplete, untested, and not fit for purpose" [Onwubiko2020]

"overly prescriptive, slow to change, and often suffer from a lack of responsible oversight." [Smith2021]

"there are no existing CSIR standards that provide advice on which analysis heuristic or tool to use at one time or in what situation, given limited analyst resources." [Spring2021]

[Ponemon2014] Cyber Security Incident Response: Are we as prepared as we think?
[NIST2016] SP 800-184 Guide for Cybersecurity Event Recovery..
[Onwubiko2020] SOTER: A Playbook for Cybersecurity Incident Management, *Transactions on Engineering Management*.
[Smith2021] The Agile Incident Response for Industrial Control Systems (AIR4ICS) framework, *Computer & Security*.
[Spring2021] Review of Human Decision-making during Computer Security Incident Analysis. *Digital Threats: Research and Practice*.
[MarketWatch] https://www.marketwatch.com/press-release/incident-response-market-size-volume-share-demand-growth-business-opportunity-by-2023-trending-report-2022-01-10, *Last access: March 23*, 2022

Background

0

Threat model: cyber kill chain [LockheedMartin] [SANS2015]

- Gain **initial access** to the network
- Propagate in the network via lateral movement

[LockheedMartin] https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html, *Last access: March 23*, 2022. [NIST2012] SP 800-61 Rev2 Computer Security Incident Handling Guide. [SANS2015] The industrial control system cyber kill chain. [NERC/FERC2020] Cyber planning for response and recovery report (CYPRES). [CISA2021] Cybersecurity incident & vulnerability response playbooks.

Background

Threat model: cyber kill chain [LockheedMartin] [SANS2015]

- Gain **initial access** to the network
- Propagate in the network via lateral movement

Defense model [NIST2012] [CISA2021]

- Confirm **security incident** took place
- **Scope** the attack
- Contain, eradicate, and restore
- Perform **post-incident analysis**

[LockheedMartin] https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html, *Last access: March 23*, 2022. [NIST2012] SP 800-61 Rev2 Computer Security Incident Handling Guide. [SANS2015] The industrial control system cyber kill chain. [NERC/FERC2020] Cyber planning for response and recovery report (CYPRES). [CISA2021] Cybersecurity incident & vulnerability response playbooks.

Background

Threat model: cyber kill chain [LockheedMartin] [SANS2015]

- Gain **initial access** to the network
- Propagate in the network via lateral movement

Defense model [NIST2012] [CISA2021]

- Confirm **security incident** took place
- Scope the attack
- Contain, eradicate, and restore
- Perform **post-incident analysis**

Key challenges: information uncertainty and resource allocation

- Security observations are **noisy**, **incomplete**, and **contradictory**
- Quick response may be suboptimal [NERC/FERC2020]
- **Delayed containment** is dangerous [NIST2012]

[LockheedMartin] https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html, Last access: March 23, 2022.
[NIST2012] SP 800-61 Rev2 Computer Security Incident Handling Guide.
[SANS2015] The industrial control system cyber kill chain.
[NERC/FERC2020] Cyber planning for response and recovery report (CYPRES).
[CISA2021] Cybersecurity incident & vulnerability response playbooks.

Research questions (RQs)

During incident response, defenders need to answer the following questions:

(RQ1) What is the **probability of compromise** of the network hosts?

(**RQ2**) What is the containment strategy that **minimizes the overall impact**?

(RQ3) At a given moment, whether to continue the **investigation** or proceed to the **containment**?

(RQ4) If the answer to RQ3 is to continue the investigation, then which host should be inspected, using which security tool, to yield the optimal outcome?

1

0000

Relationships between the **basic components** of a **static IR model**. Ovals represent **known unknowns**, solid rectangles represent **known knowns**, and dashed rectangles represent **defense decisions**.

1

0

Relationships between the **basic components** of a **static IR model**. Ovals represent **known unknowns**, solid rectangles represent **known knowns**, and dashed rectangles represent **defense decisions**.

0

FORMAT

INSTITUT

1

1

0

FORMATIO

INSTITUTE

0000

FORMAT

INSTITUT

0

1

0000

FORMATI

INSTITUTE

1

0^{.0}

1

Relationships between the **basic components** of a **static IR model**. Ovals represent **known unknowns**, solid rectangles represent **known knowns**, and dashed rectangles represent **defense decisions**.

1

0

Relationships between the **basic components** of a **static IR model**. Ovals represent **known unknowns**, solid rectangles represent **known knowns**, and dashed rectangles represent **defense decisions**.

1

0

Relationships between the **basic components** of a **static IR model**. Ovals represent **known unknowns**, solid rectangles represent **known knowns**, and dashed rectangles represent **defense decisions**.

0

INFORMATION

INSTITUTE

0

INFORMATION

INSTITUTE

0.00

INFORMATION

INSTITUTE

1

0

INFORMATION

1

0

INFORMATIO

1

0

INFORMATIO

Evaluations

0.00

INFORMATI

INSTITUTE

A campus network model [Enoch2019]

Evaluations

A campus network model [Enoch2019]

Table	1.	Lateral	movement	risk	s.

0

	ws→ws	ws→pc	ws→as	pc,as→pc,as	as→db
WEP	very likely	unlikely	very unlikely	likely	even

Table 2. Quantified words of estimative probabilities (WEP).

	very unlikely	unlikely	even	likely	highly likely
exact	.15	.3	.5	.7	.85
range	[.05, .2]	[.2, .45]	[.45, .55]	[.55, .8]	[.8, .95]

Table 3. Investigation results using two security tools, ST_1 and ST_2 .

	ws1	ws2	pc1	pc2	pc3	as1	as2	db1
ST ₁	1	-1	1	-1	-1	1	-1	-1
ST ₂	-1	-1	1	-1	-1	0	0	-1

	ws	pc	as	db
$f_i(0, 0)$	0.0	0.0	0.0	0.0
$f_i(1, 0)$	1.0	5.0	15.0	25.0
$f_i(1, 1)$	2.5	12.5	37.5	62.5
$f_i(0, 1)$	5.0	25.0	75.0	125.0

Table 4. Values of the impact functions of each type of network host.

(**RQ1**) What is the **probability of compromise** of a host given an observation?

- o⁰ = no observation o¹ = observation usi
 - = observation using ST_1 only
- o^{12} = observation using both ST₁ & ST₂

Table 3. Investigation results using two security tools, ST_1 and ST_2 .

	ws1	ws2	pc1	pc2	pc3	as1	as2	db1
ST ₁	1	-1	1	-1	-1	1	-1	-1
ST ₂	-1	-1	1	-1	-1	0	0	-1

Experiment 1: probability of compromise

(**RQ1**) What is the **probability of compromise** of a host given an observation?

	ws1	ws2	pc1	pc2	pc3	as1	as2	db1
\mathbf{ST}_1	1	-1	1	-1	-1	1	-1	-1
\mathbf{ST}_2	-1	-1	1	-1	-1	0	0	-1

Table 3. Investigation results using two security tools, ST_1 and ST_2 .

0¹ = observation using ST₁ only o¹²

0⁰

= observation using both $ST_1 \& ST_2$

Probability of compromise under different observation matrices using **crude Monte Carlo** (left) and **importance sampling** (right).

Experiment 2: optimal containment policy

(RQ2) What is the containment decision that yields the minimum expected impact?

<u>Exp. 2a:</u> optimal containment vs other containment strategies
(i) no containment c⁰
(ii) optimal containment c^{*}: contain all hosts except as2 and db1
(iii) full containment c¹

The **risk curves** of three different containment strategies.

Experiment 2: optimal containment policy

(RQ2) What is the containment decision that yields the minimum expected impact?

<u>Exp. 2a:</u> optimal containment vs other containment strategies
(i) no containment c⁰
(ii) optimal containment c^{*}: contain all hosts except as2 and db1
(iii) full containment c¹

The risk curves of three different containment strategies.

Table 5. Sensitivity analysis of the optimal containment decision subjected to variability in the probabilities and impacts.

	ws1	ws2	pc1	pc2	pc3	as1	as2	db1
(i) no vari.	100%	100%	100%	100%	100%	100%	0%	0%
(ii) prob.	100%	100%	100%	100%	100%	56%	23%	18%
(iii) prob. & impact	98%	97%	100%	92%	92%	59%	31%	27%

Exp. 2b: sensitivity analysis

(i) **no variability**

(ii) variability in probabilities

(iii) variability in probabilities &

impacts (70%-130%)

0.0

(**RQ4**) Which host to investigate, using which security tool?

Γ(o, **τ**) = **minimally achievable** reward

(o) = **immediate** reward

0.0

(**RQ4**) Which host to investigate, using which security tool?

1. as2, ST₁

0.0

(**RQ4**) Which host to investigate, using which security tool?

1. as2, ST₁

Γ(o, **τ**) = **minimally achievable** reward

(o) = **immediate** reward

0^{:0}

(**RQ4**) Which host to investigate, using which security tool?

- 1. as2, ST₁
- 2. pc3, ST₁

Γ(o, **τ**) = **minimally achievable** reward

(0) = **immediate** reward

0.0

(**RQ4**) Which host to investigate, using which security tool?

- 1. as2, ST₁
- 2. pc3, ST₁
- 3. db1, ST₂
- 4. ws2, ST₁

Optimal detection search tree.

Т

- o = current observation matrix, $\Gamma(o, \tau)$ = minimally achievable reward
- = remaining time
- **(**o) = **immediate** reward

(**RQ4**) Which host to investigate, using which security tool?

- 1. as2, ST₁
- 2. pc3, ST₁
- 3. db1, ST₂
- 4. ws2, ST₁

(**RQ3**) To investigate or to contain? $\Gamma(o, \tau) \leq \Gamma(o) \Rightarrow$ investigate until running out of time/option

Temporal incident response model

0

INFORMATION TRUST

Model assumptions

Assumption 0: the uncertain attack graph faithfully captures the logic of multistep cyberattacks

Assumption 3: the initial point of intrusion and the attack scenario are probabilistically independent

Assumption 4: security observations are probabilistically independent

Assumption 5: the impact function is deterministic

Assumption 6: the impact function is additive