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Languages and Algorithms

Algorithm analysis is based on low-level machine models.
• Time = number of instructions.
• Space = number of cells of storage.

Machine-based approaches suffer some important weaknesses:

• Relies on pseudo-code and compilation strategy.
• Not very realistic, eg with respect to memory hierarchies.
• No concept of composition of programs.
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Our goal is to promote functional language models for algorithms.
• Replace pseudo-code by real code.
• Analyze the code you actually run.
• Independent of a compilation method.

Cost Semantics: associate an abstract cost with each execution.

Provable Implementation: map abstract cost to concrete cost on a
machine with provable performance bound.

Obtain end-to-end asymptotics for realistic functional languages.
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Example: Parallelism [B & Greiner 96]

Associate a dynamic dependency graph to an evaluation derivation.
• Records true data dependencies (no approximation).
• Exposes inherent parallelism and sequentiality.

Two measures of a cost graph g :

• Work, or sequential complexity: size of g .
• Span, or parallel complexity: diameter of g .
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Cost Graphs
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Provable Implementation

Brent’s Theorem: A computation with work w and span s can be
implemented on a p-processor PRAM in time O(w/p + s).

• Work in chunks of p as much as possible.
• Proof is constructive: exhibits a scheduler.

Validates prediction given by high-level asymptotics.

• Transfers from high-level to low-level model.
• Provable cost bounds on a PRAM.
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IO Model [Aggarwal & Vitter 88]

RAM-based IO model:
• Unbounded secondary memory, bounded primary memory.
• Cost = blocked transfers between primary and secondary.

Example results:

• Matrix multiply without blocking: O(n3/B).
• . . . with blocking: O(n3/(B

p
M).

• 2-way merge sort: O((n/B) log
2

(n/B)).
• . . . M/B-way: O((n/B) log(M/B) (n/B))

Memory allocation and layout done by hand!
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IO Efficient Functional Algorithms

Replicate A&V results in a purely functional language model.
• Automatic storage management.
• Natural functional code, not pseudo-code.

Key ideas:

• Operations in primary memory are cost-free.
• Charge only for migration to and from secondary memory.
• Provably efficient implementation on A & V machine model.

Confirms that automatic storage management is cache-friendly.
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Evaluation: � @ e +n
R �0 @ l .

• All values are allocated at a location in storage.

• Cost n measures traffic between primary and secondary.

Storage model: � = (µ, ⇢, ⌫) [Morrisett, Felleisen, & H. 95]

• µ: unbounded secondary memory with blocks of size B.
• ⇢: bounded primary memory of size M = k ⇥ B.
• ⌫: nursery of size M with a linear ordering on its domain.
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Simplified Memory Model

Nursery Secondary Primary
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Read: � @ l #n �0 @ v .
• Read location l from store � to obtain value v .
• Cost accounts for loads to and evictions from primary.
• Eviction policy by the Ideal Cache Model.

Allocate: � @ v "n
R �0 @ l .

• Allocate value v in � obtaining �0 and l .
• Cost n accounts for migration to secondary.
• Live objects are blocked on migration to secondary.
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Example: Map

Mapping over a list:
fun map f nil = nil

| map f (h::t) = (f t) :: map f t

Definition A list is compact if it can be traversed in time O(n/B).

• Intuitively, not scattered through memory.
• Robust with respect to forward or backward traversal.

Theorem If l is compact and f is simple, then map f l is compact
and has IO cost O(n/B).
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Example: Merge

Nearly standard implementation:
fun merge nil ys = ys

| merge xs nil = xs

| merge (xs as x::xs’) (ys as y::ys’) =

case compare x y of

LESS ) !x::merge xs’ ys

| GTEQ ) !y::merge xs ys’

The notations !x and !x denote deep copy to ensure compactness.
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Example: Merge Sort

Theorem For compact inputs of size n and simple comparison,
merge xs ys has cost O(n/B).

• Recurs down lists allocating only stack n frames: O(n/B).
• Returns allocating n list cells: O(n/B).

Theorem For compact input of size n, sort xs has cost
O((n/B) log(M/B)(n/B)).

(Matches A&V bound in IO model.)
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Provable Implementation (First Attempt)

“Theorem” If � @ e +n
R �0 @ l , then e may be evaluated in the IO

model in time k ⇥ n using a primary memory of size 4 ⇥ M.

Proof sketch:

• Copying GC with semispaces for nursery: 2 ⇥ M.
• LRU is 2-competitive with ICM [Sleator & Tarjan 85]: 2 ⇥ M.

However, the “theorem” is not quite correct as stated . . . .
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Stack Management

Simplified semantics does not account for control stack.
• For map stack space can be amortized against allocation

(DPS).
• But a program may use more stack space than data space!

But consider non-tail recursive factorial:
fun fact 0 = 1

| fact n = n * fact (n-1)

Simplified semantics predicts O(1) cost, but true cost is O(n/B)!
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Cost Semantics for IO

The cost semantics must be enhanced to allocate frames:

8
>>><

>>>:

� @ app(�; e
2

) "n1
R[locs(e1)

�
1

@ k
1

�
1

@ e
1

+n0
1

R[{k1} �
0
1

@ l 0
1

�0
1

@ l 0
1

#n00
1 �00

1

@�x .e �00
1

@ app(l 0
1

;�) "n000
1

R �
2

@ k
2

�
2

@ e
2

+n2
R[{k2} �

0
2

@ l 0
2

�0
2

@ [l 0
2

/x ]e +n0
2

R �0 @ l 0

9
>>>=

>>>;

� @ app(e
1

; e
2

) +n1+n0
1+n00

1+n000
1 +n2+n0

2
R �0 @ l 0

Modifications:

• Frames are never read! Allocation cost suffices.
• Root set R records live data in the (implicit) control stack.
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Provable Implementation (Corrected)

Theorem If � @ e +n
R �0 @ l , then e can be executed in the IO model

in time k ⇥ n using a primary cache of size 4 ⇥ M + B.

Proof given in two major steps:
• Implement cost semantics on a stack machine.
• Implement stack machine on A&V IO model.
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Stack Management

Stack frames are allocated in the nursery.
• May exist solely within nursery.
• May migrate to secondary memory.

Dedicate a cache block of B frames in primary memory.

• Not influenced by frames in nursery.
• Specially managed read cache for stack frames.
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Stack Management

Stack cache block may be evicted up to B times.
• Newer frames may overflow nursery.
• Reading evicted frames replaces stack cache.

Amortize cost of eviction over allocation of newer frames.
• Put $3 on each frame block as it is migrated to secondary.
• Use $1 for migration.
• Use $1 for initial load.
• Use $1 for reload of evicted block.
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Summary

Cost semantics supports analysis of complexity of high-level code.
• No need for “pseudo-code”.

• Avoid reasoning about implementation.

Aggarwal & Vitter’s results can be matched using natural
functional code.

• Must consider compactness of data structures.
• End-to-end comparable to machine-level implementation.
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Open Questions

Can we sort IO optimally with a cache oblivious algorithm?
• Merge sort uses M/B-way split.
• Frigo, et al. 99 give a cache-oblivious sorting algorithm.

Can the IO model be extended to account for parallelism?
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