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Introduction

We have verified add, sub, multiply, divide (microcode), compare, convert,
logical, shuffle, blend, insert, extract, min-max instructions from Centaur’s
64-bit, X86-compatible, NanoTM microprocessor.

Media unit can add/subtract four pairs of floating-point numbers
every clock cycle with a two-cycle latency.

Multiplier implements scaler & packed X86, X87, and FMA.

For our verifications, we use a combination of AIG- and BDD-based
symbolic simulation, case splitting, and theorem proving.

We create a theorem for each instruction to be verified.

We use ACL2 to mechanically verify each proposed theorem.

We discuss our verification approach for formally verifying execution-unit
instructions for the Centaur NanoTM – the NanoTM is used by Dell, HP,
Lenovo, OLPC, and Samsung.
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Centaur NanoTM X86-64 Microprocessor

Contemporary Example

Full X86-64 design
including VMX

40-nanometer design
of 97.5M transistors

AES, DES, SHA, and
random-number
generator hardware

Built-in security
processor

Runs 40 operating
systems and four VMs
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The Centaur Verification Tool Relationships

EMOD( type,          , inputs, st )

Symbolic

ACL2 Transistor Analyzer

Netlist

Translators?
Available

Simulation

Nano Spice

Cadence

Database

Nano GDS2 Nano OPC GDS2

Switches with strengths

Sized capacitors

Integer specifications and microcode

X86 ISA specification

fragments

X86 binary

code

Node

Equations

Wire and State

Equations

Output and Next

State Equations

SYM_SIM(         , inputs, st )

Simulation

Equality

ACL2
TP

ACL2

ACL2 Verilog
Translator

Nano "Golden"

Verilog

VIA Nano

VIA Nano

Nano Masks

Model

E (EMOD)
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Toolflow

We begin, by translating Nano’s Verilog specification into our
formally-defined, E-language HDL.

Verilog is simplified into single-assignment form.

Create environment suitable for media unit verification.

We extract its equation by symbolic simulation.

We specialize this equation to the instruction of interest.

We then, as appropriate, convert this equation into BDDs.

The specification is written in ACL2.

Integer operations are used to specify media-unit instructions.

Such operations are symbolically simulated and specialized.

These specification are proven to implement floating-point operations.

Finally, the results of both paths are compared.
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The Verilog-to-E Translator

Logic

Library Files (.v)

Processor Files (.v)

ROM Images

makeTop
Script

top.v

VL

Loader

~550,000 lines
Everything but some libraries

reader
preprocessor

lexer
parser

"loader"

ACL2 Program

Parse Tree

Tr
a
n

sf
o
rm

a
ti
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n

s

Cut Down Modules (Optional)
Make Reasonable
Unparameterize
Fill in Wires
Resolve Argument Lists
Resolve Constant Expressions
Standardize Ranges and Selects
Rewrite Operators
Compute Signs
Self-Determine Sizes
Fix Integer Size to 32 Bits
Context-Determine Sizes
Split Expressions
Replicate Instance Arrays
Truncate Expressions for Lvalues
Optimize
Assignments to Occurrences (Occform)
Eliminate Always Blocks (In progress)

ACL2 Object
(not on disk)

"Conservatively
     Approximates"

Parse Tree
ACL2 Object
(not on disk)

Writer

E Modules
(defm ...)
(defm ...)
(defm |*fadd*| ...)

Xformed Verilog
module ...
module ...
module fadd ...

FV

Q.E.D.
P(x)

"Differ By Parens"

DV

Simulation
Centaur's 

Regression Suite

"Pass/Fail
  Together?"
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Use of the E Language

We have developed a formalized HDL in support of industrial design.

Deeply embedded E language in ACL2 logic.

Language descriptions are represented as Lisp constants.

ACL2 theorem-proving system used to verify E descriptions.

The E langauge is formal.

Syntax of E language is recognized by ACL2 predicate.

Semantics given by interpreter.

Multiple evaluators defined: BDD, four-valued BDD, AIG, four-valued
AIG, dependency, and delay.
Symoblic simulation for all modes (except delay).

The E Language is in everyday industrial use at Centaur.
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E-Language Features

The E language is deeply embedded in ACL2, and it is:

hierarchical, and

occurrence-oriented.

We use the E language much like a database; it includes:

HDL descriptions

Hierarchical state representation

Signal sense and direction

Clock discipline

Properties

Annotations

E-language has multiple symbolic simulators

BDD and AIG (both two- and four-valued) simulators

Symbolic information-flow simulator

Delay estimator
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Symbolic Simulation in ACL2

We have created developed a verified framework for ACL2 that provides a
means for symbolic simulation.

Defined functions can be mechanically generalized.

Each mechanically defined generalized function is automatically
verified.

Such generalized functions, given finite sets, can be symbolically
executed.

Our framework allows the results of symbolic simulation of ACL2
functions to be used as a part of a proof.

Our work provides a symbolic-simulation capability for the entire ACL2
logic.
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Core Technology: ACL2

Core Technology: ACL2

Our work is based on the ACL2 logic and its mechanical theorem prover.

First-order predicate calculus with recursion and equality.

Atomic data objects

Complex rationals: 5, -12, 3/4, \#C(3 4)
Characters: #\a, #\8, #\Tab
Strings: "abc", "aBc", "ABC"
Symbols: X, DEF, |abc|, |54-fifty4|

Data constructor

Pairs: (CONS 7 "ghi"), ’(7 . "ghi")
Sophisticated quotation and abbreviation mechanisms

Functions – subset of Common Lisp

31 primitive functions
200+ defined functions
Guards defined for all functions

Page 10 (Centaur Technology, UT Austin) Centaur Verification Approach May, 2010 10 / 28



Core Technology: ACL2

Fibonacci Function Example

(defun fib (x)
(declare (xargs :guard (natp x)))
(mbe :logic

(if (zp x)
0

(if (= x 1)
1

(+ (fib (- x 2)) (fib (- x 1)))))
:exec
(if (< x 2)

x
(+ (fib (- x 2)) (fib (- x 1))))))

Any such function can be memoized.

(memoize ’fib :condition ’(< 40 x))
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Core Technology: ACL2

Equivalent Function Proof Statement

(defun f1 (fx-1 fx n-more)

(declare (xargs :guard (and (natp fx-1)

(natp fx)

(natp n-more))))

(if (zp n-more)

fx

(f1 fx (+ fx-1 fx) (1- n-more))))

(defun fib2 (x)

(declare (xargs :guard (natp x)))

(if (zp x)

x

(f1 0 1 (1- x))))

(defthm fib2-is-fib

(implies (natp x)

(equal (fib2 x)

(fib x))))
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Symbolic Simulation Proof Examples

Symbolic Simulation Proof Examples

A simple arithmetic fact.

(def-gl-thm 4-5-6-is-less-than-7-8-9

:hyp (and (natp x) (natp y)

(<= 4 x) (<= 7 y)

(<= x 6) (<= y 9))

:concl (< x y)

:g-bindings ‘((x ,(g-number (list (list 0 1 2 3 4))))

(y ,(g-number (list (list 5 6 7 8 9)))))

:rule-classes nil)

An obvious observation about the factorial function.

(def-gl-thm fib-in-range

:hyp (and (natp x)

(<= 4 x) (<= x 6))

:concl (or (equal (fib x) 3)

(equal (fib x) 5)

(equal (fib x) 8))

:g-bindings ‘((x ,(g-number (list (list 0 1 2 3)))))

:rule-classes nil)
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A Simple Embedded Language

A Simple Embedded Language

To illustrate embedding a HDL within ACL2, we define the semantics of a
Boolean logic based on IF trees.

(defun if-termp (term) (defun if-evl (term alist)

(declare (xargs :guard t)) (declare

(if (atom term) (xargs :guard

(eqlablep term) (and (if-termp term)

(let ((fn (car term)) (eqlable-alistp alist))))

(args (cdr term))) (if (atom term)

(and (consp args) (cdr (assoc term alist))

(consp (cdr args)) (if (if-evl (cadr term) alist)

(consp (cddr args)) (if-evl (caddr term) alist)

(null (cdddr args)) (if-evl (cadddr term) alist))))

(eql fn ’if)

(if-termp (car args))

(if-termp (cadr args))

(if-termp (caddr args))))))
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A Simple Embedded Language

Example IF Tree and Verification by Symbolic Execution

(to-if ’(implies (and x y) (or x y)))

==>

’(IF (IF X Y NIL) (IF X T Y) T)

Our language of IF trees only contains one logical connective.

(def-gl-thm if-evl-example

:hyp (and (booleanp a) (booleanp b))

:concl (if-evl ’(IF (IF X Y NIL) (IF X T Y) T)

‘((NIL . nil)

(T . t)

(X . ,a)

(Y . ,b)))

:g-bindings ‘((a ,(g-boolean 0))

(b ,(g-boolean 1))))
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ECC Example

ECC Example

64
648

72
8 8

64

1

1

64

errors

data

corrected_output_bits

correctable_error

uncorrectable_error

syn2

8

syn164

"Memory"

Error Injection

ecc_gen

ecc_gen

ecc_decode

data_err

syn_err

Model to analyze the ECC circuitry.

Syndrome unit produces error-correcting code

ECC unit decodes syndrome to produce 1-hot, correction position
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Verilog for ECC Model

Verilog for ECC Model

module ecc_model (data, // Input Data

errors, // Error Injection

corrected_output_bits, // Output Data

correctable_error, // Corrected?

uncorrectable_error); // Can’t be corrected

ecc_gen gen1 (syn1, data); // Generate syndrome bits for "memory"

assign data_err = data ^ errors[63:0]; // Fault injection

assign syn_err = syn1 ^ errors[71:64]; // Fault injection

ecc_gen gen2 (syn2, data_err); // Syndrome bits for "memory" output

assign syn_backwards_xor = syn_err ^ syn2; // Compute syndrome

ecc_decode make_outs (bit_to_correct, // One-Hot output correction

correctable_error, // Correctable error?

uncorrectable_error, // UnCorrectable error?

syn_backwards_xor); // Syndrome input

assign corrected_output_bits = bit_to_correct ^ data_err;

endmodule
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E-Language for ECC Model

E-Language for ECC Model

(:n |*ecc_model*|

:i (|data[0]| |data[1]| |data[2]| |data[3]| |data[4]|

|data[5]| |data[6]| |data[7]| |data[8]| |data[9]| ...)

:o (|corrected_output_bits[0]| |corrected_output_bits[1]|

|corrected_output_bits[2]| |corrected_output_bits[3]|

|corrected_output_bits[4]| |corrected_output_bits[5]|

|corrected_output_bits[6]| |corrected_output_bits[7]|

|corrected_output_bits[8]| |corrected_output_bits[9]| ...)

:occ ((:full-i #@53# :full-o #@54# :u |_gen_3|

:op #.*vl_64_bit_buf* :o #@55# . #@56#)

(:full-i #@57# :full-o #@58# :u |_gen_4|

:op #.*vl_8_bit_buf* :o #@59# . #@60#)

(:full-i #@61# :full-o #@62# :u |_gen_5|

:op #.*vl_64_bit_pointwise_xor*

:o #@63# . #@64#)

(:full-i #@19# :full-o #@20#

:u |gen1|

:op #.|*ecc_gen*|

:o #@21#

:i #@22#) ... ))
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ACL2 Specification for ECC Model

ACL2 Specification for ECC Model

(defn our-one-bit-error-predicate (bad-bit)

;; Check output correctness if one error injected.

(declare (xargs :guard (natp bad-bit)))

(let* ((data (qv-list 0 1 64))

(errors (q-not-nth bad-bit

(make-list 72 :initial-element nil)))

(inputs (ap data errors)))

(equal (mv-let (s o)

(emod ’two |*ecc_model*| inputs nil)

(declare (ignore s))

(list :corrected-bits

(take 64 o)

:correctable_error

(nth 64 o)

:uncorrectable_error

(nth 65 o)))

(list :corrected-bits

data

:correctable_error

(< bad-bit 64)

:uncorrectable_error

NIL))))
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ACL2 Specification for ECC Model

The Centaur Multiplier Units

B−vector

Product−vector

A−vector

Calculation

Exponent

Booth

Encoding

Booth

Encoding

32 x 32

  CSA

 Tree

32 x 32

 CSA

Tree

Add / Round / Normalize

Prepare, Special Cases, Multiple Rounds

Combine, Calculate Flags, Special Cases

Many multiplier configurations

signed and unsigned 8x8,
16x16, 32x32, 64x64

packed-integer multiply

packed-integer
multiply-and-add

floating-point: X87 and VX
flavors with single, double,
and extended precisions

floating-point multiply-add

Divide (not shown) is 4-bits-per-
clock hardware with microcode
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ACL2 Specification for ECC Model

Centaur NanoTM Media Unit – FADD

Adder Adder Adder Adder

DP SP EP
Adder

Control

Clocks
Control

Instruction
Flags Data A

Data B

1074 inputs

Completion
Signals

Exceptions
Results

394 outputs

SP

33,700 line Verilog description of 680 modules
Modules represent 432,322 transistors
Unit has 374 outputs and 1074 inputs (26 clocks)
Implements over 100 media instructions
Two-cycle-latency for floating-point additions/subtractions
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ACL2 Specification for ECC Model

The Centaur Media-Unit, Verification Tool Flow

Hardware 
Output 
BDDs

Spec 
Output 
BDDs

=?

Verilog 
Files

fadd
EMOD

module

EMOD

�����

Symbolic 
Simulator

fadd AIG 
function

AIG2BDD

Specialize

Instruction 
Spec

Symbolic 
Spec

Case-splitting,
Parametrization

Per-instruction
AIGs
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ACL2 Specification for ECC Model

Symbolic Simulation of the Media Unit

Using the E-language model, we perform a four-valued, AIG-based
symbolic simulation of entire design for eight half-cycles.

AIGs specialized for the instruction under investigation

AIGs are converted to BDDs

For some instructions, a property may be too big to verify directly, so
case splitting employed
For each case, BDD approximated until exact
For each case, compared to symbolic simulation of specification

Cases are shown to be exhaustive
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ACL2 Specification for ECC Model

The Centaur Media-Unit, Case-Splitting Approach

For floating-point add/subtract,
problem is too big to verify all at
once.

Case split by exponent
differences

Separately, account for
special cases (e.g., NaNs,
Infinity)

For each case, generate
symbolic inputs that cover
exactly the specified set of
inputs

BDDs are parametrized
Approach used for all FP
sizes

Exponent 10 Max
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a
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ACL2 Specification for ECC Model

Centaur Media-Unit, Verification

We attempted to verify single, double, and extended precision
addition/subtraction operations.

Single precision (32-bit) results and flags OK.

Double precision (64-bit) results and flags OK.

Extended precision (80-bit) results had an error.

Exactly one pair of numbers returned an incorrect answer
Sort of like a perfect storm; a 64-bit cancellation
Answer returned was twice as big as it should have been.

A fix was developed, and this bug has been eliminated. We have checked
the correctness of the new design – it took less than an hour.

Robert Krug proved that our Boolean-based adder/subtracter specification
is correct.
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ACL2 Specification for ECC Model

Transistor-level Analysis

xi9 net11 b net8 vss0 unmos wn−0.9 fn=1 ln=0.045 geon=0 m=1 lenpol=1.000

xi11 net8 c vss0 vss0 unmos wn=0.9 fn=1 ln=0.045 geon=0 m=1 lenpol=1.000

xi6 net14 dabc vdd0 vss0 inv wp=1.8 wn=0.3 lp=0.04 ln=0.04 fp=2 fn=1 geop=0 geon=0 m=1

xi14 net17 vss0 vdd0 vdd0 urpmos wp0.14 fp=1 lp=0.07 geop=0 m=1 lenpol=1.000

xi4 net14 xpch vdd0 vdd0 urpmos wp−.3 fp=1 lp=0.04 geop=0 m=1 lenpol=1.000

xi5 net14 dabc net17 vdd0 urpmos wp=0.14 fp=1 lp=0.04 geop=0 m=1 lenpol=1.000

.ends xdand3_6

SYM_SIM(              , inputs, st )

Node

Equations

.subckt xdand3_6 dabc a b c xph vdd0 vss0

xi8 net14 a net11 vss0 unmos vn−0.9 fn=1 ln=0.045 geon=0 m=1 lenpol=1.000
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ACL2 Specification for ECC Model

Latent Design Flaws: Additional Translators Available?

EMOD( type,          , inputs, st )

Symbolic

ACL2 Transistor Analyzer

Netlist

Translators?
Available

Simulation

Nano Spice

Cadence

Database

Nano GDS2 Nano OPC GDS2

Switches with strengths

Sized capacitors

Integer specifications and microcode

X86 ISA specification

fragments

X86 binary

code

Node

Equations

Wire and State

Equations

Output and Next

State Equations

SYM_SIM(         , inputs, st )

Simulation

Equality

ACL2
TP

ACL2

ACL2 Verilog
Translator

Nano "Golden"

Verilog

VIA Nano

VIA Nano

Nano Masks

Model

E (EMOD)
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ACL2 Specification for ECC Model

Conclusion

ACL2 is in everyday commercial use at Centaur Technology.

Each night, entire design is translated

570,000 lines of Verilog translated to E
Unable to translate some modules – working to finish translation

New ACL2 containing all E-based modules is built each day.

Entire translation and build time about 15 minutes
Human verifiers get newest design version each morning

Each night we recheck our proofs on the new model

Extending ACL2:

by deeply embedding the E HDL, transistor-level HDL,

with AIG and BDD algorithms, which we mechanically verified, and

by providing generalized symbolic simulation of all ACL2 functions,

it is possible to use a theorem prover to support
an industrial hardware verification flow.
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