Cerberus: towards an Executable Semantics for
Sequential and Concurrent C11

Kayvan Memarian, Kyndylan Nienhuis, Justus Matthiesen,
James Lingard, Peter Sewell

May 5, 2015

1/24

1 - What is C?

Different possible answers:

» what is described in the standard
= ISO/IEC 9899-2011 + various defect reports

» various “de facto” definitions:

» what compilers assume
» what programmers believe
» what different corpuses of C code actually require to run

» what analysis and verification tools assume (e.g. CompCertC)

2/24

2 - What we want

A formalisation of C11 which:
1. focuses on the various “de-facto” Cs (to study existing C codes)

2. is parametric (independence from impl. choices/interpretations)

w

. supports C/C++11 concurrency

4. could be recognisable by those familiar with the C standard

3/24

3 - Why C is hard

C11 expressions hide a lot their complexity:

» loose and intricate ordering (sequence-before relation)

v

hidden occurrence of memory operations (boundary of object lifetime)

v

implicit type conversions (usual arithmetic conv; integer promotions)

v

partiality (undefined behaviour)

» parametricity (implementation-defined choices)

\4

real code uses features outside of ISO C

Direct formalisation of a complex language leads to heavy and quickly
intractable semantic states.

4/24

4 - Semantics by elaboration

elaboration

Cll =======» Core

> the elaboration function explains each C11 construct
» Core has simple constructs (albeit quite a few)

» the elaboration produces verbose Core programs but with explicit
behaviour

5/24

4 - Semantics by elaboration

int main(void) {
int x =0, vy =1;
return Xx+y;

}

6/24

4 - Semantics by elaboration

proc main(): eff integer :=
let strong (x, y) = unseq(create(<alignof>("signed int"), "signed int"),
create(<alignof>("signed int"), "signed int")) in
store("signed int", x, conv_int("signed int", 0)) in
store("signed int", y, conv_int("signed int", 1)) in

let strong
let strong

()
()

let strong a3 =
let weak (al, a2) = unseq(load("signed int", x), load("signed int", y)) in
overflow("signed int", conv_int("signed int", al) + conv_int("signed int", a2))
in
let strong () = unseq(kill(x), kill(y)) in
return (conv int("signed int", a3))

7/24

5 - Cerberus’ structure

11 parser
C » Cabs
(post preprocessor)
desugar‘
Ail
Cll typing‘
Ailx
Memoryjmodel elaboration
(layout+concurrency)
______ » execution
Core*~
Implementation .“‘
choices .,
R :
proof assistant
Cerberus

8/24

o -

| 2

v

v

v

v

v

The Core language: some features

functional style with first-order recursive functions
simple discrimination between pure and effectful computations
explicit memory actions (including object lifetime boundary)

a calculus to express the sequenced-before relation:

let weak (a1,a2) = unseq(Ej, Ep) in

store(7, ptr, a1 + a2)

C types and implementation-defined constants as values:

("signed int", n)

explicit undefined behaviours and dynamic-runtime errors:

if a = 0 then undef(Division by zero) else a; / a

others: continuation operators, non-determinism, 1/0, ...

9/24

6 - The Core language (1/2)

= unit | null | true | false | [vi,...,v,] | (vi,...,vp)
| 7 | unspec(7) | neZ | <ptr> | <array-const>
| <struct-const> | <union-const>

pure expressions:

pe ::= undef | error | v | a | <impl-name> | cons(pe;, pe,)
| case_list(pe;, pe,, nm) | case_ctype(pe;, pe,, nmj,...,nmg)
| shift(pe, <shift-path>) | not(pe) | pe, ope,
| <mem-op>(pe;...pe,) | (peq,...,pe,) | nm(pe;...pe,)
|

let a=pe; in pe, | if pe; then pe, else pe,y
nm ::= SYMBOL | ¢‘impl-def function names’’
<shift-path> ::= { (m,peq),...,(7n,pE,) }

10/24

6 - The Core language (2/2)

par(Ey, ..., E)) | wait(<tid>)

raise (event-name) | register(event-name, nm)

E ::= pe | let a=pe, in E; | if pe; then E else E3 | nm{pe,,...,pe,}
| nd(Eq,...,E;) | return(pe)
| Al A | skip
| unseq(Ey,...,E,) | let weak (ay,...,a,) = E; in E
| let strong (ay,...,a,) = E; in E; | let atomic a = A; in P
| indet;(E) | bound;(E)
| save 6(a;:71,...,an:70) In E | run 6(ay: Eq,...,a,: E,)
|
|

memory actions:

A ::= create(pe_,pe | alloc(pe,) | kill(pe

align) ptr)

| store(pe,,pe,,.pe,) | load(pe ,pe,,) | -

11/24

6 - The Core language: design motivation

Very different from C11

Designed for the purpose of expressing the behaviour of C11 programs
= each Core construct is motivated by a C11 behaviour

Suitable for usual semantics techniques

» each construct has only one distinct behaviour

v

functional style

v

strongly typed

v

small-step with continuations stack

12/24

6 - The Core language

int main(void) {
int x =0, y = 1;
return x+y;

}

13/24

6 - The Core language

proc main(): eff integer :=
let strong (x, y) = unseq(create(<alignof>("signed int"), "signed int"),
create(<alignof>("signed int"), "signed int")) in
store("signed int", x, conv_int("signed int", 0)) in
store("signed int", y, conv_int("signed int", 1)) in

let strong ()
let strong ()

let strong a3 =
let weak (al, a2) = unseq(load("signed int", x), load("signed int", y)) in
overflow("signed int", conv_int("signed int", al) + conv_int("signed int", a2))
in
let strong () = unseq(kill(x), kill(y)) in
return (conv int("signed int", a3))

14/24

6 - The Core language

int f(int n) {
n+l;

}

int main(void) {
int x =0, y = 1;
return f(x)+y;

}

15/24

6 - The Core language

proc f(n: pointer): eff integer :=
let strong al =
let weak (a2, a3) = unseq(load("signed int", n), 1) in
overflow(“signed int", conv_int("signed int", a2) + conv_int("signed int", a3))
in
undef("Reached_end of function")

proc main(): eff integer :=
let strong (x, y) = unseq(create(<alignof>("signed int"), "signed int"),
create(<alignof>("signed int"), "signed int")) in
let strong () =
unseq(store(“signed int", y, conv_int("signed int", 1)),
store("signed int", x, conv_int("signed int", 0))) in

let strong al =

let weak (a2, a3)
let strong ptrl
let strong tmpl
let strong ()
let strong retl
let strong ()
retl

unseq(

create(<alignof>("signed int"), "signed int") in
load("signed int", x) in

store("signed int", ptrl, tmpl) in

f{ptrl} in

kill(ptrl) in

load("signed int", y)
) in
overflow("signed int", conv_int("signed int", a2) + conv_int("signed int", a3))
in

let strong () = unseq(kill(x), kill(y)) in
return (conv_int("signed int", al))

16,24

7 - Elaboration: the left shift operator (E; << Ej)

© ISO/IEC 2011 — All rights reserved ISO/IEC 9899:2011 (E)

6.5.7 Bitwise shift operators

Syntax
1 shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression
Constraints

2 Each of the operands shall have integer type.
Semantics

3 The integer promotions are performed on each of the operands. The type of the result is
that of the promoted left operand. If the value of the right operand is negative or is
greater than or equal to the width of the promoted left operand, the behavior is undefined.

4 The result of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are filled with
zeros. If E1 has an unsigned type, the value of the result is E1 x 252, reduced modulo
one more than the maximum value representable in the result type. If E1 has a signed
type and nonnegative value, and EL X 252 is representable in the result type, then that is
the resulting value; otherwise, the behavior is undefined.

5 The result of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type
or if E1 has a signed type and a nonnegative value, the value of the result is the integral
part of the quotient of E1 /2%, If E1 has a signed type and a negative value, the
resulting value is implementation-defined.

17/24

7 - Elaboration: the left shift operator (E; << Ej)
H(Elth << E2t}’2)t}’]] s

let weak (a1,a2) = unseq([E], [E2]) in
let a; = promote(ty,, ty, a;) in
let ao = promote(ty,, ty, a2) in
if a> < 0 then
undef (Negative shift)
else if ctype_width(ty) <= a» then
undef(Shift_too_large)
else
let res = (a1 * 27ax) % ((ty) + 1) in
IF AilTypesAux.is_unsigned_integer_type(tyl) THEN
res
ELSE
if is_representable(res, ty) then
res
else
undef (Non _representable shift) 18/24

8 - Memory layout model

The elaboration of C into Core is parametric on semantic choices regarding
the memory.

(back to the second slide)

» focuses on the various “de-facto” Cs (to study existing C codes)

When it comes to memory related issues, it is common for (system-level) C
programs to go outside of 1ISO C.

= requires an empirical approach:

» we need to learn the assumptions made by programmers and compilers

19/24

8 - Memory layout model (litmus tests)

Can one inspect the value of a pointer to an object whose
lifetime has ended?

#include <stdio.h>
#include <stdlib.h>
int main(void) {

}

int 1i=0;

int *pj = (int *)(malloc(sizeof(int)));

*pj=1;

printf (" (&i==pj)=%s\n", (&i==pj)?"true":"false");
free(pj);

printf (" (&i==pj)=%s\n", (&i==pj)?"true":"false");
// 1is the == comparison above defined behaviour?

Undefined in ISO C

20/24

8 - Memory layout model (litmus tests)

Can one do relational comparison (with <,>,...) of two pointers to
separately allocated objects?

#include <stdio.h>
int y=2, x=1;
int main(void) {
int *p=&x *p=&y;
_Bool bl = (p < q); // does this have defined behaviour?
~Bool b2 = (p > q); // does this have defined behaviour?
printf("(p<q = %s (p>q) = %s\n",
bl?"true":"false", b2?"true":"false");

}
Undefined in 1ISO C

21/24

8 - Memory layout model (web survey)

[1/15] How predictable are reads from padding bytes?

If you zero all bytes of a struct and then write some of its members, do reads of the padding return
zero? (e.g. for a bytewise CAS or hash of the struct, or to know that no security-relevant data has
leaked into them.)

‘Will that work in normal C compilers?
" yes
~ only sometimes
7 no
 don't know

) I don't know what the question is asking

Do you know of real code that relies on it?
7 yes

" yes, but it shouldn't

) no, but there might well be

7 no, that would be crazy

~ don't know

If it won't always work, is that because [check all that apply]:
you've observed compilers write junk into padding bytes

you think compilers will assume that padding bytes contain unspecified values and optimise away those
reads

) Other:

Comment

22/24

9 - C/C++11 concurrency

work of Kyndylan Nienhuis.

= integration with an operational model for C/C++11 concurrency.

> enable the incremental exploration of larger concurrent programs
» formally proved equivalent to Batty's C11 axiomatic formalisation (in
Isabelle/HOL)

parametricity of Core's dynamics on the memory helped:
» virtually no modification required on the concurrency model
> but relaxed reads required symbolic evaluation

23/24

Conclusion

24/24

