
Cerberus: towards an Executable Semantics for
Sequential and Concurrent C11

Kayvan Memarian, Kyndylan Nienhuis, Justus Matthiesen,
James Lingard, Peter Sewell

May 5, 2015

1/24

1 - What is C?

Different possible answers:

I what is described in the standard
⇒ ISO/IEC 9899-2011 + various defect reports

I various “de facto” definitions:
I what compilers assume
I what programmers believe
I what different corpuses of C code actually require to run

I what analysis and verification tools assume (e.g. CompCertC)

2/24

2 - What we want

A formalisation of C11 which:

1. focuses on the various “de-facto” Cs (to study existing C codes)

2. is parametric (independence from impl. choices/interpretations)

3. supports C/C++11 concurrency

4. could be recognisable by those familiar with the C standard

3/24

3 - Why C is hard

C11 expressions hide a lot their complexity:

I loose and intricate ordering (sequence-before relation)

I hidden occurrence of memory operations (boundary of object lifetime)

I implicit type conversions (usual arithmetic conv; integer promotions)

I partiality (undefined behaviour)

I parametricity (implementation-defined choices)

I real code uses features outside of ISO C

Direct formalisation of a complex language leads to heavy and quickly
intractable semantic states.

4/24

4 - Semantics by elaboration

C11 Core
elaboration

I the elaboration function explains each C11 construct

I Core has simple constructs (albeit quite a few)

I the elaboration produces verbose Core programs but with explicit
behaviour

5/24

4 - Semantics by elaboration

int main(void) {
 int x = 0, y = 1;
 return x+y;
}

6/24

4 - Semantics by elaboration

proc main(): eff integer :=
 let strong (x, y) = unseq(create(<alignof>("signed int"), "signed int"),
 create(<alignof>("signed int"), "signed int")) in
 let strong () = store("signed int", x, conv_int("signed int", 0)) in
 let strong () = store("signed int", y, conv_int("signed int", 1)) in

 let strong a3 =
 let weak (a1, a2) = unseq(load("signed int", x), load("signed int", y)) in
 overflow("signed int", conv_int("signed int", a1) + conv_int("signed int", a2))
 in
 let strong () = unseq(kill(x), kill(y)) in
 return (conv_int("signed int", a3))

7/24

5 - Cerberus’ structure

Cerberus

Cabs

Ail

Core

Memory model
(layout+concurrency)

desugar

elaboration

execution

proof assistant

C11
(post preprocessor)

C11 typing

Ailτ

parser

Implementation
choices

8/24

6 - The Core language: some features
I functional style with first-order recursive functions

I simple discrimination between pure and effectful computations

I explicit memory actions (including object lifetime boundary)

I a calculus to express the sequenced-before relation:

let weak (a1,a2) = unseq(E1,E2) in

store(τ, ptr, a1 + a2)

I C types and implementation-defined constants as values:

<Integer.conv nonrepresentable signed integer>("signed int", n)

I explicit undefined behaviours and dynamic-runtime errors:

if a2 = 0 then undef(Division by zero) else a1 / a2

I others: continuation operators, non-determinism, I/O, ...
9/24

6 - The Core language (1/2)

values:

v ::= unit | null | true | false | [v1, . . . , vn] | (v1, . . . , vn)
| τ | unspec(τ) | n ∈ Z | <ptr> | <array-const>

| <struct-const> | <union-const>

pure expressions:

pe ::= undef | error | v | a | <impl-name> | cons(pe1, pe2)

| case list(pe1, pe2, nm) | case ctype(pe1, pe2, nm1, . . . , nm8)
| shift(pe, <shift-path>) | not(pe) | pe1 ◦ pe2
| <mem-op> (pe1 . . . pen) | (pe1, . . . , pen) | nm(pe1 . . . pen)

| let a = pe1 in pe2 | if pe1 then pe2 else pe3

nm ::= SYMBOL | ‘‘impl-def function names’’

<shift-path> ::= { (τ1, pe1), . . . , (τn, pen) }

10/24

6 - The Core language (2/2)

E ::= pe | let a = pe1 in E2 | if pe1 then E2 else E3 | nm{pe1, . . . , pen}
| nd(E1, . . . ,En) | return(pe)
| A | A | skip
| unseq(E1, . . . ,En) | let weak (a1, . . . , an) = E1 in E2

| let strong (a1, . . . , an) = E1 in E2 | let atomic a = A1 in P
| indeti (E) | boundi (E)
| save δ(a1 : τ1, . . . , an : τn) in E | run δ(a1 : E1, . . . , an : En)

| par(E1, . . . ,En) | wait(<tid>)

| raise(event-name) | register(event-name, nm)

memory actions:

A ::= create(peτ , pealign) | alloc(pen) | kill(peptr)

| store(peτ , peptr, pen) | load(peτ , peptr) | · · ·

11/24

6 - The Core language: design motivation

Very different from C11

Designed for the purpose of expressing the behaviour of C11 programs
⇒ each Core construct is motivated by a C11 behaviour

Suitable for usual semantics techniques

I each construct has only one distinct behaviour

I functional style

I strongly typed

I small-step with continuations stack

12/24

6 - The Core language

int main(void) {
 int x = 0, y = 1;
 return x+y;
}

13/24

6 - The Core language

proc main(): eff integer :=
 let strong (x, y) = unseq(create(<alignof>("signed int"), "signed int"),
 create(<alignof>("signed int"), "signed int")) in
 let strong () = store("signed int", x, conv_int("signed int", 0)) in
 let strong () = store("signed int", y, conv_int("signed int", 1)) in

 let strong a3 =
 let weak (a1, a2) = unseq(load("signed int", x), load("signed int", y)) in
 overflow("signed int", conv_int("signed int", a1) + conv_int("signed int", a2))
 in
 let strong () = unseq(kill(x), kill(y)) in
 return (conv_int("signed int", a3))

14/24

6 - The Core language

int f(int n) {
 n+1;
}

int main(void) {
 int x = 0, y = 1;
 return f(x)+y;
}

15/24

6 - The Core language
proc f(n: pointer): eff integer :=
 let strong a1 =
 let weak (a2, a3) = unseq(load("signed int", n), 1) in
 overflow("signed int", conv_int("signed int", a2) + conv_int("signed int", a3))
 in
 undef("Reached_end_of_function")

proc main(): eff integer :=
 let strong (x, y) = unseq(create(<alignof>("signed int"), "signed int"),
 create(<alignof>("signed int"), "signed int")) in
 let strong () =
 unseq(store("signed int", y, conv_int("signed int", 1)),
 store("signed int", x, conv_int("signed int", 0))) in

 let strong a1 =
 let weak (a2, a3) = unseq(
 let strong ptr1 = create(<alignof>("signed int"), "signed int") in
 let strong tmp1 = load("signed int", x) in
 let strong () = store("signed int", ptr1, tmp1) in
 let strong ret1 = f{ptr1} in
 let strong () = kill(ptr1) in
 ret1
 ,
 load("signed int", y)
) in
 overflow("signed int", conv_int("signed int", a2) + conv_int("signed int", a3))
 in

 let strong () = unseq(kill(x), kill(y)) in
 return (conv_int("signed int", a1))

16/24

7 - Elaboration: the left shift operator (E1 << E2)

17/24

7 - Elaboration: the left shift operator (E1 << E2)
[[(E1

ty1 << E2
ty2)ty]]

let weak (a1, a2) = unseq([[E1]], [[E2]]) in
let a1 = promote(ty1, ty, a1) in
let a2 = promote(ty2, ty, a2) in
if a2 < 0 then

undef(Negative shift)

else if ctype width(ty) <= a2 then
undef(Shift too large)

else
let res = (a1 * 2^a2) % (<ctype max>(ty) + 1) in

IF AilTypesAux.is unsigned integer type(ty1) THEN

res

ELSE

if is representable(res, ty) then
res

else
undef(Non representable shift)

18/24

8 - Memory layout model

The elaboration of C into Core is parametric on semantic choices regarding
the memory.

(back to the second slide)

I focuses on the various “de-facto” Cs (to study existing C codes)

When it comes to memory related issues, it is common for (system-level) C
programs to go outside of ISO C.

⇒ requires an empirical approach:

I we need to learn the assumptions made by programmers and compilers

19/24

8 - Memory layout model (litmus tests)

Can one inspect the value of a pointer to an object whose
lifetime has ended?

#include <stdio.h>
#include <stdlib.h>
int main(void) {
 int i=0;
 int *pj = (int *)(malloc(sizeof(int)));
 *pj=1;
 printf("(&i==pj)=%s\n", (&i==pj)?"true":"false");
 free(pj);
 printf("(&i==pj)=%s\n", (&i==pj)?"true":"false");
 // is the == comparison above defined behaviour?
}

Undefined in ISO C

20/24

8 - Memory layout model (litmus tests)

Can one do relational comparison (with <,>, . . .) of two pointers to
separately allocated objects?

#include <stdio.h>
int y=2, x=1;
int main(void) {
 int *p=&x *p=&y;
 _Bool b1 = (p < q); // does this have defined behaviour?
 _Bool b2 = (p > q); // does this have defined behaviour?
 printf("(p<q = %s (p>q) = %s\n",
 b1?"true":"false", b2?"true":"false");
}

Undefined in ISO C

21/24

8 - Memory layout model (web survey)

22/24

9 - C/C++11 concurrency

work of Kyndylan Nienhuis.

⇒ integration with an operational model for C/C++11 concurrency.

I enable the incremental exploration of larger concurrent programs
I formally proved equivalent to Batty’s C11 axiomatic formalisation (in

Isabelle/HOL)

parametricity of Core’s dynamics on the memory helped:
I virtually no modification required on the concurrency model
I but relaxed reads required symbolic evaluation

TODO

23/24

Conclusion

24/24

