
Certifiably Safe

Software-Dependent Systems:

Challenges and Directions

Support:

Work supported in part by the US National Science Foundation (NSF) (#1239543), the NSF US Food and Drug Administration Scholar-in-
Residence Program (#1355778), the National Institutes of Health / NIBIB Quantum Program, the US Air Force Office of Scientific Research
(AFOSR) (#FA9550-09-1-0138), the Ontario Research Fund, and the Natural Sciences and Engineering Research Council of Canada

ICSE 2014 – Future of Software Engineering

Foundational Principles

 Many standards address safety-critical
software

 Differing philosophies regarding, e.g.,

 software criticality

 requirements on development
processes

 Differences between standards make
it hard to translate evidence of
compliance between standards.

 Number of standards and differences
differences between standards

 can be bewildering to anybody
operating in the domain,

 can be a significant barrier in the
education of new practitioners and
researchers.

Challenge: establish foundational principles that provide a common basis for software
safety assurance across domains and applications.

Standards

Criteria in Safety Certification

 Standards play a key role in
providing uniform community-
developed assessment criteria for
systems within a safety-critical
domain.

 What is the appropriate use of
standards in safety certification of a
software-dependent safety-critical
system?

 What are the necessary and
sufficient criteria that should be
required in those standards?

 What specific processes and
products should these criteria
address?

Challenge: Standards impose requirements on products and processes and specify
conformance criteria

Requirements

 Mainstream IT…
 deficiency in requirements is the biggest

source of unanticipated cost and delay

 products issues surface through usage
experience

 Certifiably Safe Systems
 Requires introduction of safety requirements

(and techniques for discovering those)

 Requirements engineering should facilitate
the validation needed for assurance

 assurance by a third party before
deployment

 In CS and Software Engineering, most
of the focus is on verification rather
than gap between real needs and
requirements

Challenge: establish valid requirements, i.e., requirements specifications that are complete,
correct, unambiguous, and yet understandable to all stakeholders.

Compositional Certification

 Many modern development strategies
emphasize (de)composition and reuse

 Component reuse, product-lines, platforms, etc.

 Current certification regimes focus on
certifying entire systems

 Mechanisms for reusing certification artifacts and
assurance claims in different contexts are limited

 Research is needed to determine the
extent to which

 individual components could be certified to
conform to interface properties

 in the context of rigorously defined architectures
that constrain emergent properties, and

 the interface properties, architectural principles,
and associated assurance would be sufficiently
strong so as to allow systems assembled from
those components to avoid a full assessment of
all component implementations to justify
correctness and safety.

Challenge: Develop engineering and assurance approaches that support compositional
certification and reuse of certified components while maintaining the same confidence levels in
safety as one would have when assessing complete systems.

Components & Reuse

Safety/Security-critical Platforms

Systematic Reuse in Product Lines

Use of Tools in Certification

 How do we establish confidence in
these tools that participate directly or
indirectly in this demonstration?

 How much confidence do we need in
the tools?

 How can the claims, evidence, and
assurance artifacts associated with the
use of different tools be combined to
substantiate an overall assurance case
for a system?

 How can we create a standards and
regulatory ecosphere that will grow
the market of certification-relevant
tools and encourage innovations
within this space?

Challenge: If certification can be viewed as a demonstration of conformance to
safety-related requirements, how should tools integrate with this process?

Automation of Hazard Analyses

 Significant modeling and automation
tooling for other aspects of the life cycle,
but little support for modeling, automation
of hazard analysis and integration, e.g.,
with requirements tools.

 Results in...
 a lack of rigor in execution and documenting of the

analyses

 difficulties in managing and updating results as
design and implementation evolves,

 difficulties on the part of certification agents in
assessing the completeness and accuracy of results

 Challenge...
 hazard analysis requires reasoning about

unplanned interactions,

 unintended behaviors,

 behaviors that the system may exhibit when
components are failing or when functions are
erroneous

Challenge: Hazard analysis drives the creation of safety requirements, drive design, and plays
a key role in safety assurance arguments. How can we provide the same level of modeling,
automated tooling, and methodology support as for other aspects of development?

Error
Source

Error State
Machine
(Failure
modes)

Error
Propagation

…leading to
hazard

Integration of reasoning about fault propagation with
formal architecture descriptions.

Building Competencies

 Market forces not effective in
providing training resources,
because these systems are a
relatively small segment of the vast
software engineering market

 Engineering safety-critical systems
increasingly requires breadth as well
as domain knowledge far beyond the
delivery-capability of the current
educational infrastructure

 Management in many development
organizations…
 Is not aware of competence needed

 Has little appreciate for the dangers
introduced by the growing complexity
inherent in software based systems

Challenge: Current competence-building practices, including the educational infrastructure and
curricula, are not sufficient to engineer emerging safety-critical systems

SCC – Requirements with Intent

Software

Hardware

Product
Requirements

Validation

Customer
Real

Needs/Intent

Product

Verification

Gap!

…most deficiencies and
disappointments in safety-
critical systems occur
because the requirements
specification does accurately
reflect needs and intent for
that system.

Software Development Ecosphere

CIS 890 -- Requirements -- Introduction

Domain Knowledge

Goals
Assumptions

Design

Agreement,
Shared View

?

CIS 890 -- Requirements -- Introduction

Importance of Requirements

Errors made during the requirements stage
account for 40 to 60 percent of all defects

found in a software project

-- Davis 1993; Leffingwell 1997.

Where do errors come from?

CIS 890 -- Requirements -- Introduction

Importance of Requirements

The hardest single part of building a software
system is deciding precisely what to build. No

other part of the conceptual work is as difficult as
establishing the detailed technical requirements,

including all the interfaces to people, to machines,
and to other software systems. No other part of
the work so cripples the resulting system if done
wrong. No other part is more difficult to rectify.

-- Fred Brooks, in "No Silver Bullet: Essence and
Accidents of Software Engineering".

What’s the hardest part of building a software system?

CIS 890 -- Requirements -- Introduction

Stakeholders in

Conventional Software Engineering

 Customers -- fund a project or acquire a product to satisfy their
organization’s business objectives.

 Users -- interact directly or indirectly with the product (a subclass of
customers).

 Requirements analysts -- write the requirements and communicate
them to the development community.

 Developers -- design, implement, and maintain the product.

 Testers -- determine whether the product behaves as intended.

 Documentation writers -- produce user manuals, training materials,
and help systems.

 Manufacturing people – must build the products that contain software.

 Sales, marketing, field support, help desk, etc. -- who will have to work
with the product and its customers.

Nowhere more than in the requirements process do the interests
of all the stakeholders in a software or system project intersect

Wiegers, Karl (2009). “Software Requirements” (Chapter 1)

Additional Stakeholders in

Safety-Critical Systems
Regulatory / Certification Regimes Third-Party Certification Agents

Society at Large

Standards

Software

Hardware
Product

Requirements

Kinds of Requirements

CIS 890 -- Requirements -- Introduction

Relating different kinds of requirements

Wiegers, Karl (2009). “Software Requirements” (Chapter 1)

Adding Safety Requirements

Software

Hardware

System

Notions of Loss / Harm

Hazard

…exists a sequence
of events (situation)

that can lead to
harm

Hazard RankingSystem Safety
Requirements

Hazard Mitigation
Design away
Control
Alert

Software
Requirements

Challenge: Constructing safety
requirements requires a number
of additional concepts

Partitioned Tasking
Challenge: Activities in this space are often partitioned into different disciplines
and engineering roles, and incomplete understanding and information flow
contributes to gaps between requirements and customer intent/safety

Safety
Engineering

System
Engineering

Software
Engineering

Safety Assessment / Risk Management

CIS 890 -- Homework 1

Challenge: Safety analysis, system engineering, etc. includes a number of new
concepts, techniques, etc. How much of this does a software engineer on a
safety-critical system need to know?

ARP 4761
Safety Assessment for

Airborne Vehicles

Importance of Experience /

Domain Knowledge

CIS 890 -- Homework 1

Challenge: Even if engineers are well-versed in techniques and processes, will
there still be difficulties in closing the gap?

“Indeed what evidence there is
suggests that the most

significant factor in achieving
low hazardous failure rates is

domain knowledge” –

McDermid – Software Safety:
Where’s the Evidence?

Example Workforce Demographics

25% of Northrop
Grumman
engineering
workforce is eligible
for retirement.

Another 15% will be
eligible for retirement
within the next five years.

Challenge: In the safety-critical industry, a lot of the “experience resource” may
be retiring soon. There is a new to properly train and integrate new generations

Safety / Systems / Software Engineering

 The processes of system engineering, safety engineering,
and software engineering are not well-integrated

 Isolation starts with the competence-building infrastructure

 …continues through vocabularies of discourse, paradigms, and
tools

 Gaps across safety engineering, systems engineering,
and software engineering need to be bridged

 Gaps across domain experts, system developers, software
developers, and safety experts should be bridged

Summarizing…

Decomposition Creates Gaps

Hardware

System

System
Requirements

Software
Requirements

Hardware
Requirements

Challenge: Systemization of the engineering for quality requirements –
starting from a top-level property such as Safety and decomposing it
into a model of characteristics and sub-characteristics, such that the
satisfaction of the top-level property can be evaluated consistently
across different qualified people, teams, or organizations.

Is intent maintained?
Is intent/rationale of
decomposition clear?

Nature of Criteria

 We desire that a standard state
criteria that when applied to
system C will result in C being
safe

 However, a standard is not
meant to be applied to a single
system C but a family of systems
C1, …, Cn.

 Each of the Ci may vary in their
notions of loss, hazards, safety
requirements, etc.

C1 Safety
Requirements

C2 Safety
Requirements

C3 Safety
Requirements

Standards

Gap

Challenge: There must always be a gap and/or
degree of indirection between criteria leading to safety
that a standard can specify and safety requirements of
particular products. What is the most effective kind of
criteria for a standard to state?

Nature of Criteria

 One approach to reducing the
gap being the general criteria of
a standard and the safety
requirements of a particular
product is standard refinement

 Refined standards identify criteria
for specific classes of devices

 But there is still generality, e.g.,
the Infusion Pump standard must
apply to pumps from many
different manufacturers
 Thus, there are still gaps…

C1 Safety
Requirements

C2 Safety
Requirements

C3 Safety
Requirements

Standards

Challenge: Can standards better apply product-line
and feature-ordered/aspect-oriented approaches to
hone in on safety requirements for particular systems?

Infusion
Pump

Standard

Pacemaker
Standard

MRI Machine
Standard

Example of Standard

Refinement
The 60601 family of medical device safety standards provides an example of standard
refinement/aspect that allow more general requirements to be tailored to particular
contexts…

Particular Standards for specific
device classes (e.g., infusion
pumps) inherit, refine, (and even
override) general criteria

Collateral Standards call out
specific aspects such as Usability,
Alarms, etc. That can be applied
when needed to specific devices
(feature-oriented).

Nature of Criteria

Software

Hardware

Product
Requirements

Verification Validation

Customer

Product

Process
Requirements

Compliance

Process

Development

Standards &
Regulations

Arguments
and

Evidence

Claims

Conformity
Assessment

Assurance

Nature of Criteria

Product
Requirements

Customer

Process
Requirements

Standards &
Regulations

60601 Example of Product Requirement…

Nature of Criteria

Product
Requirements

Customer

Process
Requirements

Standards &
Regulations

14971 Example of Process/Artifact Requirement…

No criteria for evaluating the goodness of this process step!

Completeness Issues

 Identification of all hazards

 …with all associated safety and security

 Identification of all necessary interfaces to
system, etc.

Graphic-based Designs as

Requirements

Should graphic-based designs be considered as requirements? Are we really
capturing intent?

Medical Application Platforms

 A Medical Application Platform is a safety- and security-
critical real-time computing platform for…

 Integrating heterogeneous devices, medical IT systems, and
information displays via communications infrastructure, and

 Hosting applications (“apps”) that provide medical utility via the
ability to acquire information from and update/control
integrated devices, IT systems, and displays

B
u
s EMR

Databases

DevicesDisplaysClinician Console

Computational Platform

Apps

Possible Structure for 2800

General Safety/Security
Requirements for Interoperable

Medical Systems

Process for Introducing
Interoperability

Architectures / Interfaces for
Review under 2800

ICE Interoperability
Architecture / Interface
Safety/Security Principles

ICE Supervisor
Safety/Security

ICE NC
Safety/Security

ICE Equipment
Interface

Safety/Security

…

XXXX Interoperability
Architecture / Interface
Safety/Security Principles

… …

…
Particular

Requirements

General
Requirements

To achieve the goals of being architecture neutral (allowing for multiple architectures to emerge) while
being specific enough to support interoperability safety/security,… we are proposing the following
structure for organizing horizontal requirements (and 2800 family of standards, in general)…

(Architectures 1..N)

(Architecture 1 -- exemplar) (Architecture 2)

Interoperability Architecture

Network Controller (NC)

Ice Equipment
Interface (EI)
via “dongle”

Legacy
Physical
Device

App
A1

App
An

App
A2

…

Supervisor

Native
ICE-Compliant

Physical
Device

Ice Equipment
Interface (EI)

ICE Data
Logger

HIT System

Ice External
Interface

ICE App Code Language / Virtual Machine

Defining an interoperability architecture (Step 2) – identify interoperability points and interfaces.
Define functional and non-functional (real-time, safety, security) properties of interfaces

I1

I2

I3

I3

I4

C1

C2

C3

C4

C5

C6

Interoperability Architecture

General Safety/Security
Requirements for Interoperable

Medical Systems

Process for Introducing
Interoperability

Architectures / Interfaces for
Review under 2800

ICE Interoperability
Architecture / Interface
Safety/Security Principles

ICE Supervisor
Safety/Security

ICE NC
Safety/Security

ICE App
Safety/Security

…

…

Below we summarize how the definition of a particular interoperability architecture gives rise to the
structuring of Particular Requirements for that architecture…

ICE Interoperability
Architecture

(1) Follow the process
guidelines to produce the
definition of the
interoperability
architecture

Interoperability architecture along
with mapping of general
requirements to particular
requirements for architecture is
documented here

(2) Map General
Requirements onto this
particular architecture

C1 C3 C4

Particular requirements, compliance verification objectives, interface definitions,
etc., specific to each component within the architecture are documented here…

G
e
n
e
ra

l
R
e
q
u
ir
e
m

e
n
ts

P
a
rt

ic
u
la

r
R
e
q
u
ir
e
m

e
n
ts

Summary

 Requirements development continues to be a
key concern…

 …but not just system/software requirements, also
requirements within standards (and getting those to
be as effective as possible)

 Need to better bridge safety/system/software
engineering

 Decomposition of quality properties

 Better “mathematization” of requirements to support
more automated analyses

 Education often seems to be at the heart of our
problems

