
CHALLENGES IN AUTONOMOUS
VEHICLE TESTING AND VALIDATION

Philip Koopman, Carnegie Mellon University

Michael Wagner, Edge Case Research LLC

But what about fleet deployment?

• Need V&V beyond just road tests

– High ASIL assurance requires a whole lot of testing & some optimism

– Machine-learning based autonomy is brittle and lacks “legibility”

• What breaks when mapping full autonomy to safety V model?

– Autonomy requirements/high level design are implicit in training data

– What “controllability” do you assign for full autonomy?

– Nondeterministic algorithms yield non-repeatable tests

• Potential strategies for safer autonomous vehicle designs

– Safing missions to minimize fail-operational cost

– Run-time safety monitors using traditional high-ASIL software

– Accelerated stress testing via fault injection

Overview:

Fully Autonomous Vehicles Are Cool!

© 2016 Koopman & Wagner 2

https://en.wikipedia.org/wiki/Autonomous_car

Need to test for at least ~3x crash rate to validate safety

• Hypothetical fleet deployment: New York Medallion Taxi Fleet

– 13,437 vehicles, average 70,000 miles/yr = 941M miles/year

• 7 critical crashes in 2015

 134M miles/critical crash (death or serious injury)

• Assume testing representative; faults are random independent

– R(t) = e-lamba*t is the probability of not seeing a crash during testing

• Illustrative: How much testing to ensure

critical crash rate is at least as good as

human drivers? (At least 3x crash rate)

– These are optimistic test lengths…

• Assumes random independent arrivals

• Is simulated driving accurate enough?

Validating High-ASIL Systems via Testing Is Challenging

3© 2016 Koopman & Wagner

[2014 NYC Taxi Fact Book]

Testing

Miles

Confidence if NO

critical crash seen

122.8M 60%

308.5M 90%

401.4M 95%

617.1M 99%

[Fatal and Critical Injury data / Local Law 31 of 2014]

Using chi-square test from: http://reliabilityanalyticstoolkit.appspot.com/mtbf_test_calculator

Legibility: can humans understand how ML works?

• Machine Learning “learns” from training data

– Result is a weighted combination of “features”

• Commonly the weighting is inscrutable, or at least not intuitive

– There is an unknown (significant?) chance results are brittle

• E.g., accidental correlations in training data, sensitivity to noise

Machine Learning Might Be Brittle & Inscrutable

4© 2016 Koopman & Wagner

QuocNet:

Car Not a

Car
Magnified

Difference

Bus

Not a

Bus
Magnified

Difference

AlexNet:

Szegedy, Christian, et al. "Intriguing properties of neural

networks." arXiv preprint arXiv:1312.6199 (2013).

Machine Learning requirements

are the training data

• V model traces reqts to V&V

• Where are the requirements in a

machine learning based system?

– ML system is just a framework

– The training data forms de facto requirements

• How do you know the training data is “complete”?

– Training data is safety critical

– What if a moderately rare case isn’t trained?

• It might not behave as you expect

• People’s perception of “almost the same”

does not necessarily predict ML responses!

Where Are the Requirements for Machine Learning?

5© 2016 Koopman & Wagner

REQUIREMENTS

SPECIFICATION

SYSTEM

SPECIFICATION

SUBSYSTEM/

COMPONENT

SPECIFICATION

PROGRAM
SPECIFICATION

MODULE

SPECIFICATION

SOURCE
CODE

UNIT TEST

PROGRAM
TEST

SUBSYSTEM/

COMPONENT

TEST

SYSTEM

INTEGRATION

& TEST

ACCEPTANCE

TEST

VERIFICATION &

TRACEABILITY

VALIDATION & TRACEABILITY

VERIFICATION &

TRACEABILITY

VERIFICATION &

TRACEABILITY

VERIFICATION &

TRACEABILITY

Review

Review

Review

Review

Review

Review

Review

Review

Review

Review

Review

Cluster Analysis

?

?

ISO 26262 bases ASIL in part on Controllability

• If vehicle is fully autonomous, perhaps

this means zero controllability

– Are full emergency controls available?

– Will passenger be awake to use them?

– How much credit can you take for the

proverbial “big red button”?

• Can you take credit for controllability

of an independent emergency

shutdown system?

– Or, do we need “C4” for autonomy?

How Do We Assess Controllability?

6© 2016 Koopman & Wagner

How Do You Test a

Randomized Algorithm?

• Example: Randomized

path planner

– Randomly generate solutions

– Pick best solution based

on fitness or goodness score

• Implications for testing:

– If you can carefully control random number generator, maybe you

can reproduce behavior in unit test

– At system level, generally sensitive to initial conditions

• Can be essentially impossible to get test reproducibility in real systems

• In practice, significant effort to force or “trick” robot into displaying behavior

Testing Non-Deterministic Algorithms

7© 2016 Koopman & Wagner

[Geraerts & Overmars, 2002]

APD is the first unmanned vehicle to use the Safety Monitor.

(Unclassified: Distribution A. Approved for Public Release.

TACOM Case # 19281 Date: 20 OCT 2009)

Run-Time Safety Monitors

© 2016 Koopman & Wagner 8

Approach: Enforce Safety with Monitor/Actuator Pair

• “Actuator” is the ML-based software

– Usually works

– But, might sometimes be unsafe

– Actuator failures are drivability problems

• All safety requirements are allocated to Monitor

– Monitor performs safety shutdown if unsafe outputs/state detected

– Monitor is non-ML software that enforces a safety “envelope”

• In practice, we’ve had significant success with this approach

– E.g., over-speed shutdown on APD

– Important point: need to be clever in

defining what “safe” means to create

monitors

– Helps define testing pass/fail criteria too

What Happens When Primary Autonomy Has a Fault?

• Can’t trust a sick system to act properly

– With safety monitor approach, the

monitor/actuator pair shuts down

– But, you need to get car to safe state

• Bad news: need automated recovery

– If driver drops out of loop, can’t just say

“it’s your problem!”

• Good news: short duration recovery mission makes things easier

– Cars only need a few seconds to get to side of road or stop in lane

– Think of this as a “safing mission” like diverting an aircraft

• Easier reliability because only a few seconds for something else to fail

• Easier requirements because it is a simple “stop vehicle” mission

• In general, can get much simpler, inexpensive safing autonomy

Safing Missions To Reduce Redundancy Requirements

9© 2016 Koopman & Wagner

Use Robustness Testing (SW Fault Injection) to Stress Test

• Apply combinations of valid & invalid parameters to interfaces

• Subroutine calls (e.g., null pointer passed to subroutine)

• Data flows (e.g., NaN passed as floating point input)

• Subsystem interfaces (e.g., CAN messages corrupted on the fly)

• System-level digital inputs (e.g., corrupted Lidar data sets)

• In our experience, robustness testing finds interesting bugs

– You can think of it as a targeted, specialized form of fuzzing

• Results:

– Finds functional defects in autonomous systems

• Basic design faults, not just exception handling

• Commonly finds defects missed in extensive field testing

– Is capable of finding architectural defects

• e.g., finds missing but necessary redundancy

What About Unusual Situations and

Unknown Unknowns?

10© 2016 Koopman & Wagner

• Use testing dictionary

based on data types

• Random combinations of

pre-selected dictionary values

• Both valid and exceptional values

Basic Idea of Scalable Robustness Testing

© 2016 Koopman & Wagner 11

• Caused task crashes and kernel

panics on commercial desktop OS

• But what about on robots?

• Use Robustness testing for stress +

run-time monitoring for pass/fail detector

ASTAA: Automated Stress Testing of Autonomy Systems

© 2016 Koopman & Wagner 12

DISTRIBUTION A – NREC case numbers STAA-2012-10-23, STAA-2013-10-02

ASTAA Project at NREC found system failures due to:

Improper handling of floating-point numbers:

• Inf, NaN, limited precision

Array indexing and allocation:

• Images, point clouds, etc…

• Segmentation faults due to arrays that are too small

• Many forms of buffer overflow, especially dealing with complex data types

• Large arrays and memory exhaustion

Time:

• Time flowing backwards, jumps

• Not rejecting stale data

Problems handling dynamic state:

• For example, lists of perceived objects or command trajectories

• Race conditions permit improper insertion or removal of items

• Vulnerabilities in garbage collection allow memory to be

exhausted or execution to be slowed down

Example Autonomous Vehicle Defects Found via

Robustness Testing

© 2016 Koopman & Wagner 13DISTRIBUTION A – NREC case number STAA-2013-10-02

Suggested Philosophy for Testing Autonomous Vehicles:

• Some testing should look for proper functionality

– But, some testing should attempt to falsify a correctness hypothesis

• Much of vehicle autonomy is based on Machine Learning

– ML is inductive learning… which is vulnerable to black swan failures

– We’ve found robustness testing to be useful in this role

The Black Swan Meets Autonomous Vehicles

© 2016 Koopman & Wagner 14

Thousands of miles of “white swans”…
Make sure to fault inject

some “black swans”

Fully Autonomous vehicles have fundamental differences

• Doing enough testing is challenging. Even worse…

– Machine learning systems are inherently brittle and lack “legibility”

• Challenges trying to map to traditional V model for safety

– Training data is the de facto requirement+design information

– What are “controllability” implications for assigning an ASIL?

– Non-determinism makes it difficult to do testing

• Potential solution elements:

– Safing missions to minimize fail-operational costs

– Run-time safety monitors worry about safety, not “correctness”

– Accelerated stress testing via fault injection finds defects that were

otherwise missed in vehicle-level testing

– Testing philosophy should include black swan events

Conclusions

15© 2016 Koopman & Wagner

