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Challenges in Experimenting with Botnet Detection Systems

Adam J. Aviv Andreas Haeberlen
University of Pennsylvania

Abstract
In this paper, we examine the challenges faced when eval-
uating botnet detection systems. Many of these chal-
lenges stem from difficulties in obtaining and sharing di-
verse sets of real network traces, as well as determining
a botnet ground truth in such traces. On the one hand,
there are good reasons why network traces should not be
shared freely, such as privacy concerns, but on the other
hand, the resulting data scarcity complicates quantitative
comparisons to other work and conducting independently
repeatable experiments.

These challenges are similar to those faced by re-
searchers studying large-scale distributed systems only
a few years ago, and researchers were able to overcome
many of the challenges by collaborating to create a global
testbed, namely PlanetLab. We speculate that a similar
system for botnet detection research could help overcome
the challenges in this domain, and we briefly discuss the
associated research directions.

1 Introduction

Botnets continue to be a major threat to the well-being
of the Internet, and there is every reason to believe that
they will continue to be a threat. Therefore, the arms
race between botnet controllers and researchers design-
ing detection systems will also continue, at least for the
foreseeable future. As is often the case in computer secu-
rity, it is not likely that this battle will ever be won by the
“white-hat” side. Botnet controllers are continually de-
veloping more resilient and more covert ways to control
their bots, while researchers must continue to play catch
up by improving their techniques, by repairing compro-
mises, and by mitigating or taking down botnet control
structures [12, 40]. All the while, the botnet problem per-
sists, and new botnets are emerging constantly.

However, it seems that the botnet battle is being fought
on a particularly uneven playing field. Most botnets are

global phenomena: botnet controllers have, at the touch
of a button, ready access to vulnerable hosts in thousands
of administrative domains all across the Internet, and they
can easily send data back and forth between bots in dif-
ferent domains. Given this global nature of botnets, it
would be natural to expect that the most successful bot-
net detectors would also be global, in the sense that they
would combine data from many different domains. How-
ever, building and experimenting with such a detector is
currently not realistic, for at least two reasons.

First, most administrative domains consider any de-
tailed information about their networks to be a business
secret, and researchers (unlike botnet controllers) can
only obtain such information through explicit collabora-
tion agreements, which need to be manually negotiated
with every single domain. Second, network traces – the
most detailed and potentially most useful type of infor-
mation – can contain sensitive information and are there-
fore treated like information plutonium: something to be
mined only when absolutely necessary, to be carefully
controlled, and never to be shared with outsiders or even
others within the same organization. There are good rea-
sons for this cautious treatment of network traces: recent
scandals [29, 2] have demonstrated that even carefully
anonymized data can accidentally leak private informa-
tion. Nevertheless, it creates an asymmetry between bot-
net controllers and researchers: the former have access to
plenty of information, while the latter can consider them-
selves lucky if they can, after hours of careful negotiation,
obtain a small trace from their own organization.

Not only does this dearth of data hamper the effec-
tiveness of botnet detection, it is also a major obstacle
to botnet research. Since real traces are difficult to ob-
tain, researchers must be content with evaluating their
systems on a small set of traces, which is risky because
high heterogeneity on the Internet [32, 9] is not well rep-
resented by limited data sets. Alternatives, such as syn-
thetic traces [42, 44] or botnet emulators [22], are avail-
able but have their own limitations with respect to re-

1



alism and potential biases. Since traces are not easily
shared with other researchers, important scientific princi-
ples, such as a robust comparisons to other work or inde-
pendent reproducibility, are difficult to follow in practice.

In this paper, we take a step back from discussing the
design of specific botnet detection systems, and we exam-
ine the challenges faced by the field as a whole in eval-
uating the performance of such systems. We conclude
that these challenges mostly stem from difficulties in ob-
taining and sharing the basic ‘raw material’ of botnet de-
tection: real traces of network traffic, and ground truths
about infections. This leaves researchers with an inher-
ent disadvantage in the botnet arms race and, looking for-
ward, it has alarming implications for network security:
botnets could exploit these data-sharing difficulties to be-
come harder to detect! For example, a future botnet could
craft its command-and-control channel to cross as many
administrative domains as possible [18]. An individual
domain would only be able to see many small, discon-
nected segments, each of which would look innocuous by
themselves. Without data sharing across domains, such a
botnet would be difficult to detect.

We also observe that many of the challenges faced by
botnet detection researchers are similar to those faced by
researchers studying large-scale distributed systems just a
few years ago. Proposed distributed systems were meant
to be deployed globally on varied machines and net-
works, but evaluation was notoriously difficult because
individual researchers rarely had access to sufficiently
large and diverse sets of wide-area linked machines. Re-
searchers were forced to use small-scale deployments and
simulations instead. This changed with the advent of
PlanetLab [30], a global research testbed run in collab-
oration with research groups around the globe.

Hypothetically, a global, collaborative testbed for bot-
net research – akin to PlanetLab – could be used to over-
come many of the challenges we point out here. Building
such a testbed would not be trivial; indeed, several re-
search problems would have to be addressed first (e.g.,
to reliably protect sensitive information), and there are
significant logistical and organizational challenges that
would have to be overcome as well. Nevertheless, there
is evidence that both the research problems [26, 35, 48]
and the logistical problems [30] are tractable.

2 Challenges

2.1 Theory: An ideal botnet experiment
To illustrate the challenges botnet research is facing to-
day, we first describe an idealized scenario. Suppose Al-
ice is a botnet researcher who has developed a new botnet
detector. What are the questions we would like Alice to
answer in her evaluation? These would probably include:

• Does the detector work in a realistic setting? Ide-
ally, we would like Alice to deploy her detector in
the environment for which it was designed, e.g., a
federation of several ISPs.

• How well does the detector work? We would like
Alice to measure both recall and precision, i.e., how
many botnets are reported by her detector, and how
many of its reports correspond to actual botnets.

• Can the detector find state-of-the-art botnets?
Since botnets continue to evolve, we would like Al-
ice to test her detector with, and report results for,
very recent malware and very recent traces.

• How does the detector compare to prior work?
Ideally, we would like Alice to compare her detec-
tor’s performance to that of the best existing detec-
tors.

• Can we independently repeat the experiment?
Ideally, Alice would publish her detector’s source
code and/or a precise description of the algorithm,
as well as all the traces from her experiments.

Note that none of these expectations are unusual, and
similar questions are being answered in other areas of
computer science and in related disciplines.

2.2 Practice: Botnets in the real world
In practice, the ideal botnet experiments described above
are not realistic because of several challenges facing bot-
net research (and, more generally, research on network-
based intrusion detection, e.g., worm/virus detection [3,
10] or stepping-stone detection [50]):

• Multiple administrative domains: The Internet is
controlled by many different organizations, which
have different goals, interests and policies, and
which tend to be guarded about data sharing.

• Heterogeneity: Different networks can have widely
different characteristics; for example, academic and
corporate networks differ considerably [32]. It is
difficult to capture the diversity of the Internet with
a small number of network traces.

• Lack of ground truth: Given a host within a net-
work trace, it is difficult to establish whether or not it
is part of a botnet. This is particularly true for hosts
in other administrative domains where researchers
cannot directly investigate.

• Privacy concerns: Network traces contain sensitive
information about the actions and communications
of the users of the network; thus, it is difficult to
persuade network operators to collect them, let alone
share them with a third party.
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Academic At least one
traces only other trace

Overlay methodology

[13] [49] [15] [28] [25] [24]
[36] [46] [47] [14]
[41] [23] [6]

[7]
Other methodology [36] [11] [5] [20] [14] [45]

Table 1: Methodologies used in the botnet literature.
Note that some papers appear in two rows if multiple ex-
periments were performed.

These challenges substantially complicate botnet exper-
iments and evaluation. Due to the thousands of admin-
istrative domains and the high degree of network hetero-
geneity, it is would be very difficult for Alice to set up
a realistic experiment, particularly if her botnet detector
is designed to operate at large commercial ISPs and/or
requires collaboration between multiple ISPs. A lack of
ground truth also limits Alice’s ability to estimate the pre-
cision and recall of her detector. Given any trace, it is
hard to be sure how many botnets are present in it, if any.
Finally, the privacy concerns result in a general scarcity
of traces, which discourages or prevents sharing in many
cases. A larger side effect of the privacy issues and lack
of sharing is that it complicates scientific practices of
quantitative comparisons and independent repeatability.

As a consequence, researchers are forced to approx-
imate the “ideal” experiment from Section 2.1, e.g., by
using synthetic traces, or by extrapolating from a small
number of sample traces. However, this experimental
methodology can carry considerable risks, which we dis-
cuss in the next section.

3 Obtaining test traces

3.1 Best practices

Today, most experiments with botnet detection systems
rely on synthetic traces. Although methods exist for
generating synthetic network traffic [42, 44], these tech-
niques typically focus on reproducing high-level traffic
characteristics and do not accurately capture details –
such as packet payloads – that are crucial for many de-
tectors. Instead, researchers typically synthesize traces
by mixing traffic collected through measurements, e.g.,
one trace with known botnet traffic and another with be-
nign background traffic. In this paper, we refer to this
approach as the overlay methodology. This methodology
is an attractive technique to researchers because it pro-
vides a sense of ground truth, and thus a way to estimate
precision and recall. If the traces are benign, i.e., con-
tain no botnet traffic, any report on a background host is
a false positive, and any missing report is a false negative.

The overlay methodology requires two sets of traces:
botnet traffic traces and benign background traffic traces.
The botnet traces are usually obtained from a honey-
pot [1] or by gathering botnet binaries from reposito-
ries [8, 43, 37] and then executing them in a controlled
setting. The background traces are usually collected from
the network at the researcher’s own institution, typically
a campus network. The botnet traces are then combined
with the background traces in one of two ways; either by
mapping the botnet traffic to hosts that are not present in
the background trace, or, more commonly, by adding the
botnet traffic to existing hosts. Typically, each synthetic
trace contains traffic from a single botnet. Table 1 shows
a survey of papers from the field, as well as the method-
ology used in each. The publications in the table all pro-
posed detection systems or methods (e.g., automated bot-
net signature generators [45, 36]) and performed an eval-
uation on the detector in synthetic or live settings.

Despite its advantages, the overlay methodology also
carries risks. The synthetic traces do not necessarily
represent what happens in real networks; for example,
concurrent infections of different kinds of malware on a
single host [40]. It is also difficult to ascertain that the
background trace is truly benign and does not contain any
botnet traffic. Finally, the focus on academic networks
can potentially bias the results. We discuss these risks in
more detail in the rest of this section.

3.2 Challenge: Realism

To reliably estimate the performance of a botnet detector
using synthetic traces, it is essential that the traces real-
istically reflect the environment in which the detector is
likely to be deployed. If the traces are unrealistic, the de-
tection task can be too hard or too easy, resulting in an
under- or overestimation of the detector’s performance.

Controlled environments: Honeypot traces do pro-
vide a good estimate of the traffic generated by bots, but
they are gathered in an artificial environment, e.g., on
machines purposely designed to be infected, or in a con-
trolled lab environment. As a consequence, it is difficult
to be sure that the botnet behaves in the same way as it
would in the wild. Some modern botnets are adaptive;
for example, certain spamming bots check their blacklist
status regularly [34] because their value to the botnet is
proportional to their ability to send spam [40]. Hence, a
bot on a blacklist may not directly engage in spamming,
but may instead assume other roles in the botnet, which
can be easier or harder to detect. Experimenters may cre-
ate additional artifacts by removing the harmful parts of
the bots before generating the trace: this prevents harm to
others but could reduces the realism of the resulting trace.

Mixing artifacts: Since botnet trace and background
trace are typically collected in different environments,
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they do not necessarily fit together. For example, if
DHCP frequently reassigns IP addresses in the back-
ground trace, a botnet trace from a honeypot with static
IP addresses does not match well. This discrepancy could
affect detectors that rely on clustering hosts based on net-
work features [13, 46] or on event sequences and tim-
ing [14]. Challenges related to DHCP and other effects
have been pointed out in the botnet literature before, par-
ticularly in estimating the size of botnets [19, 33]. The
only reliable way to avoid such artifacts would be to de-
ploy the botnet directly on the network from which the
background trace is collected, but this would obviously
be unethical.

Multimorbidity: In real networks, it is not uncom-
mon for hosts to be infected by more than one botnet
or malware [40]. This could present an additional chal-
lenge for botnet detectors; for example, the communica-
tion graphs, which are used by some detectors [7, 28] to
identify bots based on their control channel, could over-
lap. Additionally, networks experience multiple simul-
taneous infections across hosts, and researchers do not
typically embed multiple botnets into background traces
in experiments. Among the papers we examined that use
the overlay methodology (center row in Table 1), none
described performing experiments using synthetic traces
with multiple botnet infections.

To some extent, these challenges are inherent in the
overlay methodology. They could be avoided by using
collected traces with botnet infections directly, but, as
discussed earlier, this is difficult, e.g., due to privacy con-
cerns and a lack of ground truth.

3.3 Challenge: Representativeness

The performance of most botnet detectors is likely to de-
pend on the characteristics of the network in which they
are deployed, as well as the characteristics of the preva-
lent botnets. Due to the high degree of heterogeneity in
both Internet networks and botnet behavior, it would be
desirable to experiment with a large variety of scenarios.

Focus on academic networks: As shown in Table 1,
the overwhelming majority of the traces that are currently
used for botnet experiments come from academic net-
works. This is not surprising, given that many of the pa-
pers come from academia and, due to privacy concerns,
it is extremely difficult for experimenters to obtain traces
from networks other than their local one (or, indeed, even
from there). However, it is known that academic net-
works differ from, e.g., corporate networks in terms of
their performance characteristics [32]. Thus, if a detector
is evaluated only using academic traces, it is difficult to
estimate how it would perform in a corporate network –
the performance could be better, or worse.

Scale: Some botnet detectors, e.g., [28], are designed
to run in large-scale deployments across administrative
domains to take advantage of information from multiple
vantage points. For detectors of this type, it is virtually
impossible to collect a representative set of traces because
this would require coordinating with, and probably enter-
ing into contracts with, tens or hundreds of network op-
erators across the Internet. Some traces from the Internet
backbone are available, e.g., from CAIDA [4], but due to
the limited number of usable public traces, this probably
underestimates the benefits that could be gained from a
real large-scale deployment.

3.4 Challenge: Generality
Different botnets have different characteristics. There-
fore, it is desirable to experiment with a wide variety of
botnet traces and background traces.

Botnet overfitting: Among the papers we examined
(see Table 1), the average number of botnet traces used
was 5.25, and the median was 4, with 7 papers using
traces from only one or two botnets (while [36] used as
many as 19 botnet binaries). With a limited number of
traces, it is hard to estimate how general the botnet detec-
tors are. There is considerable value in building a detector
that is effective for a specific class of botnets, or even just
a single botnet; however, there is a certain risk that a very
specific detector could be circumvented by the botnet de-
signers with relatively small changes to the botnet code
(as suggested in [39]).

Artifact overfitting: As described in Section 3.2, mix-
ing artifacts may result from the overlay methodologies,
and these artifacts pose another risk factor for certain de-
tectors. If there are subtle differences between the bot-
net trace and the background trace, e.g., the presence of
SNMP packets or encryption in one but not the other,
there is a danger that the detector may focus on these ar-
tifacts rather than on the botnet traffic itself. This is par-
ticularly risky for detectors that rely on machine learn-
ing [23], or detectors, such as [46], that create a back-
ground model and look for anomalies with respect to that
model. As a consequence, detectors may need to rely on
manual verification by a human expert, e.g., such as de-
tectors that generate automated rules, like [45].

Both risks could be avoided by using a greater variety
of traces for evaluation. However, as we have pointed out
earlier, this is difficult in practice due to privacy concerns.

3.5 Risk: False positives & negatives
In the ideal case, the background trace used to synthe-
size test traces would be completely free of botnet traffic.
However, this is difficult to achieve in practice. In fact,
traces collected at tier-1 or tier-2 ISPs, as in [28], will
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almost inevitably contain some botnet traffic. The same
is true for traces collected from campus networks, which
will likely also contain some infections. In practice, this
traffic is difficult to remove entirely because some bot-
nets use obfuscation or encryption [16]. This creates two
potential problems.

Lack of verification: If the botnet detector produces a
report for a host in the background trace, it is difficult to
determine whether the report is a false positive. The ex-
perimenter would need access to the corresponding hosts
to check for infections. This is particularly problematic
when the traces are from another administrative domain
(no access to hosts and/or anonymization) or is used long
after collection (environment changes).

To illustrate this challenge, we relate an example from
TĀMD [46], a botnet detection system that clusters hosts
based on common destinations, payloads, and platforms.
In particular, the common-destination alerts are based on
identifying a cluster of hosts that send traffic to “suspi-
cious” subnets, i.e., those that are communicated with
rarely or not at all. In one experiment, a large IRC botnet
trace was overlaid onto background traffic, but the de-
tection rate was less than expected because some of the
hosts chosen to be bots were detected visiting a different
suspicious site in the background traffic, causing them to
form a separate cluster from the other “bots”. Further
analysis of the suspicious cluster was infeasible because
the background traffic had been purposely anonymized
before processing, and payloads were not fully provided.

Experimenters can avoid this issue by running a live
deployment, as was done in the case of [14, 36, 11],
which has the nice side-effect of potentially reporting live
infections; however, this requires a major development
effort to produce a deployment-grade implementation, es-
pecially if the monitoring framework itself does not exist
yet and has to be developed as well.

False negatives: Despite best efforts, there is always a
possibility that the background trace contains some bot-
net traffic that has not been identified. If the detector
does not report those corresponding hosts, it should be
counted as a false negative, but this is, of course, im-
possible to quantify. One possible remedy would be to
re-evaluate the trace once better detectors have become
available and/or more information is known about bot-
nets.

4 Sharing traces

4.1 Challenge: Repeatability
It is good scientific practice to ensure that experiments
can be repeated independently by any interested third
party. However, this is inherently difficult to achieve
for botnet experiments because they almost inevitably in-

volve benign background traffic, which in turn can con-
tain private information and thus cannot easily be shared.
Out of the 14 papers we examined that use background
traces (see Table 1), only two rely exclusively on pub-
lic traces (from CRAWDAD [21]); one paper [28] uses
public CAIDA [4] data in addition to a non-public trace.
Two other papers [24, 25] do not explicitly specify where
or when the traces were collected.

To some extent, this problem could be mitigated by re-
lying more on public traces, e.g., from [4, 21, 31], but
due to privacy concerns, the rarity of public traces render
it hardly feasible to perform a comprehensive evaluation
based entirely on them. Authors of published papers of-
ten do make traces and binaries available upon request
– indeed, the authors of this paper have received some
traces in this way – but this is typically based on existing
trust relationships. It would be better to make the traces
available to a wider audience, e.g., by uploading them
to public repositories or by publishing them on a project
web page. But, it is not always possible to share all
information collected while performing botnet research,
e.g., due to legal restrictions. For example, the data col-
lected while performing a botnet takeover in [12] includes
legally sensitive information, such as credit card numbers
and bank account passwords, and cannot be released.

4.2 Challenge: Comparability

A related challenge is that it is very difficult to estimate
how much new detectors improve overall botnet detec-
tion. A quantitative comparison to existing work would
be easiest if there were a standard methodology, or even a
widely accepted benchmark for evaluating botnet detec-
tors. However, no such methodology or benchmark exists
today, presumably due to the pervasive privacy concerns
and the resulting difficulties for data sharing. Indeed, out
of the 18 papers we examined in Table 1, only 4 contain
any quantitative comparisons to prior work, and among
these, one compared their detector to prior work that was
done by some of the same authors. Among the others,
10 contained only qualitative comparisons, and 5 con-
tained no comparison at all. (To be fair, a quantitative
comparison was not applicable in all settings, for exam-
ple in [20].)

It is clear that a quantitative comparison of botnet de-
tectors is a difficult undertaking. There are many reasons
for this, including: (1) the fact that different detectors are
sometimes designed for different deployment scenarios,
e.g., AS-local versus Internet-wide; (2) the difficulties in
reproducing prior experiments (Section 4.1), which com-
plicate the verification that the other detectors are set up
and configured properly; (3) the ever-continuing evolu-
tion of botnets, which puts yesterday’s detectors at an in-
herent disadvantage when tasked with detecting today’s
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botnets; and, finally, (4) the fact that different detectors
focus on different types of botnets. Despite these chal-
lenges, a quantitative comparison would be useful for un-
derstanding gains in new detectors.

5 What can be done?

Given the arguments presented so far, one possible con-
clusion is that these challenges are inherent to botnet re-
search, and this is the best one can do. We do not agree
with this conclusion. We believe that this is merely the
best one can do individually. In the following section we
sketch an approach that could potentially overcome these
challenges through collaboration.

5.1 The PlanetLab analogy

The current situation in botnet research has some similar-
ities to the situation in research on large-scale distributed
systems a few years ago. Large-scale distributed sys-
tems and botnet detectors share several of the challenges
we have described in Section 2.2; in particular, most of
them are designed to run in a heterogeneous environment
with multiple administrative domains. Another parallel is
that realistic experiments would have required resources
– hundreds of nodes connected by a wide-area network
– that no individual research team had available. As a
consequence, evaluations were mostly performed in sim-
ulation, or on small-scale deployments in the lab. This
was known to be suboptimal; for example, wide-area
links have complex behaviors, such as routing changes
and transient anomalies, that can affect the performance
of the system considerably [9] but are difficult to repro-
duce in the lab.

The situation was transformed with the advent of Plan-
etLab [30]. By pooling their resources, researchers
around the world created a shared planetary-scale testbed,
in which organizations that contributed nodes could in re-
turn access the other nodes for their own experiments.
While PlanetLab may not be perfect [38], it was a gi-
ant step forward in terms of scale and realism, and
PlanetLab-based evaluations, despite their imperfections,
have become a standard in the community.

5.2 A PlanetLab for botnet research?

It seems that a similar approach could potentially be used
to overcome the challenges in botnet research. If sev-
eral different organizations, e.g., universities or research
labs, were to allow each other to deploy novel detectors
on their own networks, this would enable more compre-
hensive experiments and, due to the larger view, poten-
tially better detectors.

The big challenge, of course, is privacy. No organi-
zation would allow third-party software access to traces
from its network if there was any possibility that private
data could leak out. This is a formidable challenge, in-
deed; nevertheless, a solution does not seem infeasible.
To illustrate the point, we consider a strawman solution
at one extreme in the design space.

In this strawman design, each participating organiza-
tion would deploy a machine that would receive NetFlow
traces from the organization’s border routers but would be
prevented (through MAC filters or physically cut wires)
from sending network traffic of its own. Other organiza-
tions could send software packages to be deployed in a
VM on this machine, but they could not receive any com-
munication from it unless it was inspected, and declassi-
fied, by a network administrator. Manual declassification
obviously does not scale, but communication could be in-
frequent, e.g., a list of results at the end of an one-month
deployment. Researchers could perform testing in their
own local domains, where they could have more direct
access.

As an incentive for deployment, the system could gen-
erate regular reports for the local domain’s network ad-
ministrators, who would thus gain access to the bleeding
edge of botnet detection technology. In return, they could
provide the experimenters with some “ground truth”, e.g.,
by rating how helpful each report was to them.

5.3 “This will never work!”

Recall that the above design is merely a strawman, whose
purpose is to show that a solution is not impossible. Dis-
tributed honeypot efforts, such as [17], and public reposi-
tories, such as PREDICT [31], suggest that researchers
are willing and ready to collaborate on this issue. Of
course, an actual implementation would require a ma-
jor design effort, similar to Peterson’s PlanetLab Central,
but it could also build upon existing techniques such as
Bunker [26], SC2D [27], or collaborative security [35].

6 Conclusion

In this paper, we have outlined several challenges that re-
searchers face when evaluating new botnet detection sys-
tems, including multiple administrative domains, Inter-
net heterogeneity, lack of ground truth, and privacy con-
cerns. Ideally, botnet detectors would be evaluated using
diverse, real-world network traffic that is representative
of the conditions in which the detectors would be de-
ployed, e.g., across a federated system. But, there are se-
rious privacy concerns about releasing the requisite traffic
to researchers and others. Even when researchers do re-
ceive network traces, a ground truth is hard to determine,
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so reporting performance statistics for the detector is very
difficult.

As a result, researchers have relied on synthetic traces
generated using an overlay methodology, where botnet
traffic is mixed in with benign background traffic. This
methodology can lead to a number of pitfalls, which
could cause researchers to over- or underestimate the per-
formance of their detector. A larger consequence of this
methodology is that the background traces used in experi-
ments are not easily shared due to privacy concerns, com-
plicating basic scientific practices, such as performance
comparisons and experimental reproducibility.

We observe that many of these issues are similar to
those faced by researchers experimenting with large-scale
distributed systems before the advent of PlanetLab. We
propose a strawman system similar to PlanetLab that,
through collaboration, could ameliorate many of the ex-
perimental challenges in botnet detection research. There
are several research problems that would need to be ad-
dressed before such a system could become a reality, but
there is evidence that these problems are solvable.
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