% Warren A. Hunt, Jr. UT CS and ECE ﬂ

Circuit Specification,
Abstraction, and Reverse Engineering

*** Work In Progress ***

Warren A. Hunt, Jr.

CS and ECE Departments
1 University Station, M/S C0500

The University of Texas
Austin, TX 78712-0233

E-mail: hunt@cs.utexas.edu
TEL: +1 512 471 9748
FAX: +1 512 471 8885

& Specs, Abstraction, Anomalies, 5/2007 %

-

N

e Does a manufactured circuit meet e Subtle changes can be introduced by

its specification? foundries.
— Requires some kind of reverse en- — Some circuits are added for testa-
gineering, bility, reliability, etc.
— Low-level (maybe, transistor-level) — But, are some circuits added as
analysis, Trojan horses?

e When an ASIC is made ready for — | started to wonder if the num-
manufacturing, ber of differences could be mea-
— technology mapping occurs, sured.
— synthesis and re-timing are per- — | wondered if the number of dif-
formed, ferences mattered.
— test logic is added, and — And, | wondered if measured dif-

Warren A. Hunt, Jr. UT CS and ECE
Can We Trust Manufactured Integrated Circuits? ﬂ

— Higher-level specifications, and e Given a transistor- or gate-level model,
— Verification tools. could we separate good changes from
bad changes?

— a floorplan and layout is created. ferences indicated anything. j
1

Specs, Abstraction, Anomalies, 5/2007

Warren A. Hunt, Jr. UT CS and ECE

%

Motivating Example: Verification of a Hardware Adder

cin [p—— cin sum —Jp 50
A0 pm——~ full_adder_1bit cout —m
o —B
i— cin sum —. =1
A1 Im—— A full_adder_1bit cout —=a
61 pm—os
l
l— cin sum F—Jp 5219
A19 Im—— A full_adder_1bit cout
B1a pm——B
L xor_good
r20 [- 20
Bog P
XO.
= maj_3_way
—F
full_adder_1_bit_bad
I
l— cin sum —p 563
Ae3 pm——a full_adder_1bit cout —Jp caut
Bes [pm——B

r

& Specs, Abstraction, Anomalies, 5/2007

ﬂ

e |t should be easy to verify an adder:
— adders have a regular structure

— It just computes a sum.

e However, implementation flaws may
still exist:

— CAD or manufacturing flaws, or

— Malicious changes might be made.

e To thoroughly verify an adder imple-
mentation requires:

— netlist with transistor strengths,
capacitance of wires, etc.

— a transistor-level analyzer, and

— a symbolic verifier.

e Could we detect a subtle change? %

Warren A. Hunt, Jr. UT CS and ECE
f Circuit Verification and Measured Differences N

are acceptable:

— approximate answers adequate

e Generally, circuits are verified by simulation.

e \We advocate symbolic verification, but even so, there may be differences that

— circuits are used in a restricted environment,

— circuits used with limited input values, or

e Let's count the differences between an XOR and an OR gate.

A B OR XO0R
_____________ e
0 0 | 0 0
0 1 | 1 1
1 0 | 1 1
1 1 | 1 0

Same Different

Warren A. Hunt, Jr. UT CS and ECE
f Function Representation using BDDs

e We represent binary functions as HONS trees.
— The variable order is implicit.

— The BDDs are reduced — they may terminate early.

0 <-—- A ; The simple tree representing the
/ \ ; disjunction of A and B:
/ 0\
T 0 <-- B
/ \ ; The tree is represented by
/ 0\ ; (HONS T (HONS T NIL))
T NIL ; which just prints as: (T T).

e We have defined functions to perform logical operations on BDDs.

(let* ((a (hons T NIL)) 0 <-— A --> 0

(b (hons a a))) / \ / \

(g-fn ’or a b)) T NIL \ /

==> B --—> 0

(T T) / \
T NIL

J

grinting large BDDs isn't possible — too much output.
4
Specs, Abstraction, Anomalies, 5/2007

Warren A. Hunt, Jr. UT CS and ECE

-

Given a BDD, can we count the number
of times the output is 1 and 07

(defun count-tip-values (x depth)
(if (atom x)
(mv (if x (expt 2 depth) 0)
(if x 0 (expt 2 depth)))

(mv-let
(left-cnt-1s left-cnt-0s)
(count-tip-values (car x)
(1- depth))

(mv-let

(right-cnt-1s right-cnt-0s)

(count-tip-values (cdr x)

(1- depth))

(mv (+ left-cnt-1s right-cnt-1s)
(+ left-cnt-0s right-cnt-0s))))))

number of input combinations that pro-
duce 1 and 0 outputs.
==>

(3 1)

Counting when a BDD Function is 1 or 0

Using COUNT-TIP-VALUES determine the

ﬂ

Let's now produce the difference func-
tion between the XOR and OR functions.

(let* ((a (hons t nil))
(b (hons a a)))

(g-fn ’eqv
(qg~fn ’xor a b)
(g-fn ’or a b)))

Using COUNT-TIP-VALUES, we count the
differences.
e [hesecond argument provides a bias.

(let* ((a (hons t nil))
(b (hons a a)))
(count-tip-values

(qg-fn ’eqv
(g-fn ’xor a b)
(g-fn ’or a b))
2))
==>

\ihi::izzz:t—tip—values (t t) 2)
Specs, Abstraction, Anomalies, 5/2007

Warren A. Hunt, Jr. UT CS and ECE
/Counting the Difference Between Two Vector of BDD Functioﬁ

When counting the differences between To determine the differences between two
two, bit vectors, we compute the maxi- bit vectors, we compute the differences
mum number differences. on a bit-by-bit basis.
(defun count-max-tip-errors (defun qv-ite-cmp (a b)
(x depth cnt) (if (atom a)
(if (atom Db)
(if (atom x) nil
cnt (cons nil
(mv-let (qgv-ite-cmp nil (cdr b))))
(ones zeros) (if (atom b)
(count-tip-values (car x) depth) (cons nil
(declare (ignore ones)) (qv-ite-cmp (cdr a) nil))
(cons
(count-max-tip-errors (qg-fn ’eqv (car a) (car b))
(cdr x) depth (qv-ite-cmp (cdr a) (cdr b))))))
(max zeros cnt))))) . :
_ ~ Incomparable positions of bit vectors of
And when we compare a fa.mlly _Of bit | |neven length are assigned the maxi-
vectors to a single, specification bit vec- mum number of differences: i.e. NIL.
tor, we compute the smallest, non-zero

- . - .
mber of differences. We then measure the differences j
6
Specs, Abstraction, Anomalies, 5/2007

Warren A. Hunt, Jr.
% Example, Bit Vector Differences

UT CS and ECE

R — R Q- NIL
/ / /
/ / /
0 <-—- A ——> 0 NIL
/ \ / \
/ 0\ / 0\
T 0 <-- B T NIL - - Q-——--- NIL
/ \ / /
/ 0\ / / /
T NIL 0 <-— A --> NIL 0
/ \ / \
Answer ==> / \ /
T 0 <-- B NIL T
/ \
/\
NIL T
- Q- Q-——--- NIL
/ / /
/ / /
0 <-— A --> 0 0
/ \ / \ / \
/ 0\ /\ / 0\
T NIL NIL T T NIL

J

¥ |
K Specs, Abstraction, Anomalies, 5/2007

UT CS and ECE

Warren A. Hunt, Jr.
% Example, Count the Bit Vector Differences

s

Given the difference equations, the number of differences is shown:
(- I — @-————- NIL
/ / /
/ / /
0 <— A --> NIL 0
/ \ / \
/ 0\ / 0\
T 0 <—-B NIL T
/ \
/ 0\
NIL T
I @-———mmmmmmm e — NIL
/ / /
/ / /
1 4 2
For this result, there are four differences.
When we compare the counts of many bit vectors, we drop bit vectors that
match.

ﬂ

J

Specs, Abstraction, Anomalies, 5/2007

Warren A. Hunt, Jr. UT CS and ECE

%

Single Gate Failures

cin [p—— cin sUMm
A0 pm——~ full_adder_1bit cout
o —B

i— zin sum

Al [m—— 4 full_adder_1bit cout
61 pm—os

l

l— cin slmM

XOr.

P 5219
A19 Ppm—— 4 full_adder_1bit cout
B1a pm——B
L xor_good
a2 P P 525
Bog P

S S—

= maj_3_way

full_adder_1_bit_bad

I

l— cih sum —p 563
Ae3 pm——a full_adder_1bit cout —Jp caut
Bes [pm——B

s

Specs, Abstraction, Anomalies, 5/2007

Wy,

e First Experiment — 64 bit adder.

— Fault each two-input gate with
the other 15 Boolean logic func-
tions.

— Measure differences.

e There are 4800 flawed adders:
— 64 bit positions
— b gates per bit position
— 15 faulty gates per gate
— 65 equations, 312,000 differences

e Results (for 129 Boolean inputs)

— For one gate, replacing XOR by
OR makes no difference

— In all other cases we at least find

2126 differences in some bit. %

Warren A. Hunt, Jr. UT CS and ECE
f Single Input-Pair Failure N

Consider a 64-bit adder that returns an Let's try our subtly flawed adder model.
incorrect answer for a single pair of num- This adder has a built-in key.

bers. (v-to-nat

e Seems like this should be easy to de- (sbv-bv-adder

tect by structural means, but nil
_ _ _ (nat-to-v 7 64) (nat-to-v 3 64)
— Not if exists in purchased IP, (nat-to-v 3 64) (nat-to-v 7 64)
— Not if embedded in an ALU, or ~ (mat—to-v 11 65)))
==> 10

— Not if a fabrication change. _
_ In this case, it works fine, but...
e So, we use the developed machinery.

(v-to-nat
(defun sbv-bv-adder (sbv-bv-adder
(c a b a-val b-val ans-val) nil
(Let (nat-to-v 3 64) (nat-to-v 7 64)
((bv-adder (g-bv-adder c a b)) (nat-to-v 3 64) (nat-to-v 7 64)
(cmp-a-val (g-ite-cmp a a-val)) (nat-to-v 11 65)))

(cmp-b-val (g-ite-cmp b b-val))) __g 11
(qv-if-ite
(q-fn ’and cmp-a-val cmp-b-val) Ve can use our counting mechanisms to

Kans—val bv-adder))) determine the number of differences. j
10

Specs, Abstraction, Anomalies, 5/2007

UT CS and ECE

Warren A. Hunt, Jr.
f Count the Bit Vector Differences For Slightly Bad Adder ﬂ

Given the difference equations, the number of differences is shown:

(count-tip-values-list
(qu-ite-cmp *q-bv-adder* *sbv-bv-adderx*)
(len *all-varsx*) 0)

((:CORRECT-ANSWERS 680564733841876926926749214863536422911 :WRONG-ANSWERS 1)
(:CORRECT-ANSWERS 680564733841876926926749214863536422912 :WRONG-ANSWERS 0)
(:CORRECT-ANSWERS 680564733841876926926749214863536422912 :WRONG-ANSWERS 0)
(:CORRECT-ANSWERS 680564733841876926926749214863536422912 :WRONG-ANSWERS 0)
(:CORRECT-ANSWERS 680564733841876926926749214863536422912 :WRONG-ANSWERS 0)

)

We can compute this answer in a few milliseconds.

But, so what?
e Is this a good test for a Trojan Horse type of flaw?
e What other tests might be tried?

e What happens on other functions?

¥ 11 j
x Specs, Abstraction, Anomalies, 5/2007

-

U

Using the same flawed adder specification, we can compute the cone-of-influence
of the inputs for each output.

e For a good adder, the first output bit is dependant on only the input carry

e For our flawed adder, every output is dependent on every input bit.

e Thus, we are investigating the signatures of different logic functions using

compute the signatures of thousands of different functions in seconds.
e Is this capability just a novelty? Or, could it be useful?

e We find these capabilities useful for bug hunting.

Warren A. Hunt, Jr. UT CS and ECE
Cone-of-Influence For Slightly Bad Adder ﬂ

and the first bit of the two vectors to be added.

these and other measuring functions.

Discussion

sing unique Boolean function representations and function memoization, we can

¥ 12 j
x Specs, Abstraction, Anomalies, 5/2007

Warren A. Hunt, Jr. UT CS and ECE
f Recommendations for Foreign-Manufactured Circuits ﬂ

Attempts to ensure the security of foreign-manufactured devices is a "cat and
mouse” game that we cannot win (even though we may be forced to play). Why?

e If the instruction set (by changing the wires, transistor, gates, ALUs, caches,
protocols, etc.) of the implementation can be changed, then we cannot
guarantee the operational correctness and security of such a system.

Given this backdrop, several recommendations present themselves.

e Any foreign-manufactured device should contain a large control vector, so
that the actual application can be altered.

e Regular and programmable devices make it easier to:
— to thoroughly test, both upon receipt and in the field, and

— easier to implement desired functionality in a variety of ways.

e Our ability to insure the security of foreign-manufactured devices directly
depends, in part, on the design of these devices: regular, re-configurable
devices that can can be re-programmed while being used makes manufacturing
changes easier to detect.

¥ 13 j
x Specs, Abstraction, Anomalies, 5/2007

Warren A. Hunt, Jr. UT CS and ECE
fRecommendations for Foreign-Manufactured Circuits, continuﬂ

e To be able to reliably implement required algorithms with random implemen-
tation perturbations will require verified tools that can quickly and reliably
generate unique configuration information based on random seeds.

e Some section of the re-programmable resource should be allocated to real-
time testing.

— As each such area is successfully tested, then that area can be reconfigured
to perform some of the required task, and another section can now be
tested.

— This process should be then repeated.
The logical outcome of such requirements is that when developers of products

with security requirements must use foreign-manufactured devices, then, to the
extent possible, they should use field-programmable devices.

¥ 14 j
x Specs, Abstraction, Anomalies, 5/2007

