
 Specs, Abstraction, Anomalies, 5/2007

 Warren A. Hunt, Jr. UT CS and ECE

Circuit Specification,
Abstraction, and Reverse Engineering

*** Work In Progress ***

Warren A. Hunt, Jr.

CS and ECE Departments
1 University Station, M/S C0500

The University of Texas
Austin, TX 78712-0233

E-mail: hunt@cs.utexas.edu
TEL: +1 512 471 9748
FAX: +1 512 471 8885

 Specs, Abstraction, Anomalies, 5/2007

 Warren A. Hunt, Jr. UT CS and ECE

Can We Trust Manufactured Integrated Circuits?

• Does a manufactured circuit meet
its specification?

−Requires some kind of reverse en-
gineering,

− Low-level (maybe, transistor-level)
analysis,

−Higher-level specifications, and

−Verification tools.

• When an ASIC is made ready for
manufacturing,

− technology mapping occurs,

− synthesis and re-timing are per-
formed,

− test logic is added, and

− a floorplan and layout is created.

• Subtle changes can be introduced by
foundries.

− Some circuits are added for testa-
bility, reliability, etc.

−But, are some circuits added as
Trojan horses?

• Given a transistor- or gate-level model,
could we separate good changes from
bad changes?

− I started to wonder if the num-
ber of differences could be mea-
sured.

− I wondered if the number of dif-
ferences mattered.

−And, I wondered if measured dif-
ferences indicated anything.

1

 Specs, Abstraction, Anomalies, 5/2007

 Warren A. Hunt, Jr. UT CS and ECE

Motivating Example: Verification of a Hardware Adder

• It should be easy to verify an adder:

− adders have a regular structure

− it just computes a sum.

• However, implementation flaws may
still exist:

−CAD or manufacturing flaws, or

−Malicious changes might be made.

• To thoroughly verify an adder imple-
mentation requires:

− netlist with transistor strengths,
capacitance of wires, etc.

− a transistor-level analyzer, and

− a symbolic verifier.

• Could we detect a subtle change?
2

 Specs, Abstraction, Anomalies, 5/2007

 Warren A. Hunt, Jr. UT CS and ECE

Circuit Verification and Measured Differences

• Generally, circuits are verified by simulation.

• We advocate symbolic verification, but even so, there may be differences that
are acceptable:

− circuits are used in a restricted environment,

− circuits used with limited input values, or

− approximate answers adequate

• Let’s count the differences between an XOR and an OR gate.

A B OR XOR Same Different

-------------+--------------------------------

0 0 | 0 0 1 0

0 1 | 1 1 1 0

1 0 | 1 1 1 0

1 1 | 1 0 0 1

Total: 3 1

3

 Specs, Abstraction, Anomalies, 5/2007

 Warren A. Hunt, Jr. UT CS and ECE

Function Representation using BDDs

• We represent binary functions as HONS trees.

−The variable order is implicit.

−The BDDs are reduced – they may terminate early.

O <-- A ; The simple tree representing the

/ \ ; disjunction of A and B:

/ \

T O <-- B

/ \ ; The tree is represented by

/ \ ; (HONS T (HONS T NIL))

T NIL ; which just prints as: (T T).

• We have defined functions to perform logical operations on BDDs.

(let* ((a (hons T NIL)) O <-- A --> O

(b (hons a a))) / \ / \

(q-fn ’or a b)) T NIL \ /

==> B --> O

(T T) / \

T NIL

• Printing large BDDs isn’t possible – too much output.
4

 Specs, Abstraction, Anomalies, 5/2007

 Warren A. Hunt, Jr. UT CS and ECE

Counting when a BDD Function is 1 or 0

Given a BDD, can we count the number
of times the output is 1 and 0?

(defun count-tip-values (x depth)

(if (atom x)

(mv (if x (expt 2 depth) 0)

(if x 0 (expt 2 depth)))

(mv-let

(left-cnt-1s left-cnt-0s)

(count-tip-values (car x)

(1- depth))

(mv-let

(right-cnt-1s right-cnt-0s)

(count-tip-values (cdr x)

(1- depth))

(mv (+ left-cnt-1s right-cnt-1s)

(+ left-cnt-0s right-cnt-0s))))))

Using COUNT-TIP-VALUES determine the
number of input combinations that pro-
duce 1 and 0 outputs.

(count-tip-values ’(t t) 2) ==> (3 1)

Let’s now produce the difference func-
tion between the XOR and OR functions.

(let* ((a (hons t nil))

(b (hons a a)))

(q-fn ’eqv

(q-fn ’xor a b)

(q-fn ’or a b)))

Using COUNT-TIP-VALUES, we count the
differences.

• The second argument provides a bias.

(let* ((a (hons t nil))

(b (hons a a)))

(count-tip-values

(q-fn ’eqv

(q-fn ’xor a b)

(q-fn ’or a b))

2))

==>

(3 1)

5

 Specs, Abstraction, Anomalies, 5/2007

 Warren A. Hunt, Jr. UT CS and ECE

Counting the Difference Between Two Vector of BDD Functions

When counting the differences between
two, bit vectors, we compute the maxi-
mum number differences.

(defun count-max-tip-errors

(x depth cnt)

(if (atom x)

cnt

(mv-let

(ones zeros)

(count-tip-values (car x) depth)

(declare (ignore ones))

(count-max-tip-errors

(cdr x) depth

(max zeros cnt)))))

And when we compare a family of bit
vectors to a single, specification bit vec-
tor, we compute the smallest, non-zero
number of differences.

To determine the differences between two
bit vectors, we compute the differences
on a bit-by-bit basis.

(defun qv-ite-cmp (a b)

(if (atom a)

(if (atom b)

nil

(cons nil

(qv-ite-cmp nil (cdr b))))

(if (atom b)

(cons nil

(qv-ite-cmp (cdr a) nil))

(cons

(q-fn ’eqv (car a) (car b))

(qv-ite-cmp (cdr a) (cdr b))))))

Incomparable positions of bit vectors of
uneven length are assigned the maxi-
mum number of differences; i.e., NIL.

• We then measure the differences.

6

 Specs, Abstraction, Anomalies, 5/2007

 Warren A. Hunt, Jr. UT CS and ECE

Example, Bit Vector Differences

@-----------------@-----------------@------ NIL

/ / /

/ / /

O <-- A --> O NIL

/ \ / \

/ \ / \

T O <-- B T NIL @-----------------@-----------------@------ NIL

/ \ / / /

/ \ / / /

T NIL O <-- A --> NIL O

/ \ / \

Answer ==> / \ / \

T O <-- B NIL T

/ \

/ \

NIL T

@-----------------@-----------------@------ NIL

/ / /

/ / /

O <-- A --> O O

/ \ / \ / \

/ \ / \ / \

T NIL NIL T T NIL

7

 Specs, Abstraction, Anomalies, 5/2007

 Warren A. Hunt, Jr. UT CS and ECE

Example, Count the Bit Vector Differences

Given the difference equations, the number of differences is shown:

@-----------------@-----------------@------ NIL

/ / /

/ / /

O <-- A --> NIL O

/ \ / \

/ \ / \

T O <-- B NIL T

/ \

/ \

NIL T

@-----------------@-----------------@------ NIL

/ / /

/ / /

1 4 2

For this result, there are four differences.

When we compare the counts of many bit vectors, we drop bit vectors that
match.

8

 Specs, Abstraction, Anomalies, 5/2007

 Warren A. Hunt, Jr. UT CS and ECE

Single Gate Failures

• First Experiment – 64 bit adder.

− Fault each two-input gate with
the other 15 Boolean logic func-
tions.

−Measure differences.

• There are 4800 flawed adders:

− 64 bit positions

− 5 gates per bit position

− 15 faulty gates per gate

− 65 equations, 312,000 differences

• Results (for 129 Boolean inputs)

− For one gate, replacing XOR by
OR makes no difference

− In all other cases we at least find
2126 differences in some bit.

9

 Specs, Abstraction, Anomalies, 5/2007

 Warren A. Hunt, Jr. UT CS and ECE

Single Input-Pair Failure

Consider a 64-bit adder that returns an
incorrect answer for a single pair of num-
bers.

• Seems like this should be easy to de-
tect by structural means, but

−Not if exists in purchased IP,

−Not if embedded in an ALU, or

−Not if a fabrication change.

• So, we use the developed machinery.

(defun sbv-bv-adder

(c a b a-val b-val ans-val)

(let

((bv-adder (q-bv-adder c a b))

(cmp-a-val (q-ite-cmp a a-val))

(cmp-b-val (q-ite-cmp b b-val)))

(qv-if-ite

(q-fn ’and cmp-a-val cmp-b-val)

ans-val bv-adder)))

Let’s try our subtly flawed adder model.
This adder has a built-in key.

(v-to-nat

(sbv-bv-adder

nil

(nat-to-v 7 64) (nat-to-v 3 64)

(nat-to-v 3 64) (nat-to-v 7 64)

(nat-to-v 11 65)))

==> 10

In this case, it works fine, but...

(v-to-nat

(sbv-bv-adder

nil

(nat-to-v 3 64) (nat-to-v 7 64)

(nat-to-v 3 64) (nat-to-v 7 64)

(nat-to-v 11 65)))

==> 11

We can use our counting mechanisms to
determine the number of differences.

10

 Specs, Abstraction, Anomalies, 5/2007

 Warren A. Hunt, Jr. UT CS and ECE

Count the Bit Vector Differences For Slightly Bad Adder

Given the difference equations, the number of differences is shown:

(count-tip-values-list

(qv-ite-cmp *q-bv-adder* *sbv-bv-adder*)

(len *all-vars*) 0)

==>

((:CORRECT-ANSWERS 680564733841876926926749214863536422911 :WRONG-ANSWERS 1)

(:CORRECT-ANSWERS 680564733841876926926749214863536422912 :WRONG-ANSWERS 0)

(:CORRECT-ANSWERS 680564733841876926926749214863536422912 :WRONG-ANSWERS 0)

(:CORRECT-ANSWERS 680564733841876926926749214863536422912 :WRONG-ANSWERS 0)

(:CORRECT-ANSWERS 680564733841876926926749214863536422912 :WRONG-ANSWERS 0)

...)

We can compute this answer in a few milliseconds.

But, so what?

• Is this a good test for a Trojan Horse type of flaw?

• What other tests might be tried?

• What happens on other functions?

11

 Specs, Abstraction, Anomalies, 5/2007

 Warren A. Hunt, Jr. UT CS and ECE

Cone-of-Influence For Slightly Bad Adder

Using the same flawed adder specification, we can compute the cone-of-influence
of the inputs for each output.

• For a good adder, the first output bit is dependant on only the input carry
and the first bit of the two vectors to be added.

• For our flawed adder, every output is dependent on every input bit.

• Thus, we are investigating the signatures of different logic functions using
these and other measuring functions.

Discussion

Using unique Boolean function representations and function memoization, we can
compute the signatures of thousands of different functions in seconds.

• Is this capability just a novelty? Or, could it be useful?

• We find these capabilities useful for bug hunting.

12

 Specs, Abstraction, Anomalies, 5/2007

 Warren A. Hunt, Jr. UT CS and ECE

Recommendations for Foreign-Manufactured Circuits

Attempts to ensure the security of foreign-manufactured devices is a ”cat and
mouse” game that we cannot win (even though we may be forced to play). Why?

• If the instruction set (by changing the wires, transistor, gates, ALUs, caches,
protocols, etc.) of the implementation can be changed, then we cannot
guarantee the operational correctness and security of such a system.

Given this backdrop, several recommendations present themselves.

• Any foreign-manufactured device should contain a large control vector, so
that the actual application can be altered.

• Regular and programmable devices make it easier to:

− to thoroughly test, both upon receipt and in the field, and

− easier to implement desired functionality in a variety of ways.

• Our ability to insure the security of foreign-manufactured devices directly
depends, in part, on the design of these devices: regular, re-configurable
devices that can can be re-programmed while being used makes manufacturing
changes easier to detect.

13

 Specs, Abstraction, Anomalies, 5/2007

 Warren A. Hunt, Jr. UT CS and ECE

Recommendations for Foreign-Manufactured Circuits, continued

• To be able to reliably implement required algorithms with random implemen-
tation perturbations will require verified tools that can quickly and reliably
generate unique configuration information based on random seeds.

• Some section of the re-programmable resource should be allocated to real-
time testing.

−As each such area is successfully tested, then that area can be reconfigured
to perform some of the required task, and another section can now be
tested.

−This process should be then repeated.

The logical outcome of such requirements is that when developers of products
with security requirements must use foreign-manufactured devices, then, to the
extent possible, they should use field-programmable devices.

14

