
CodeHawk
Sound Static Analysis through Customization

HCSS
Linthicum Heights, MD

May 19, 2009

Henny Sipma
Kestrel Technology LLC

What is CodeHawk?

CodeHawk

developed under SBIR contracts from AF and Army

sound static analysis tool (goal: no false negatives)

current version specialized for buffer overflow

underlying technology: abstract interpretation

support for additional properties under development

Outline

1.Approach to property checking

2.Underlying Theory: Abstract interpretation

3.CodeHawk architecture

4.Errors, warnings and safe conditions

5.Three case studies

1.Generic: SAMATE 115 - 1278

2.Bugfinding: SAMATE 1291

3.Customized analyzer for verification: Boeing

6.Conclusions

Approach to property checking: buffer overflow

1. All buffer accesses in the program are identified

2. For each buffer access a safety condition is constructed that guarantees there

is no out-of-bounds access

3. The safety condition is evaluated against invariants generated

Approach to property checking: buffer overflow

Invariants Safety conditions

Over-approximation of the
reachable state space of
the program

constants

intervals
 (variable ranges)

polyhedra
 (variable relationships)

flow/context sensitive

generated using abstract interpretation

⊫

constructed using

size of allocated memory
blocks (stack or heap)

current offset into allocated
memory block

semantics of library functions

Abstract Interpretation

Mathematical Theory of Approximation

Developed in 1970’s by Cousot and Cousot in France

Theory is well established - hundreds of research papers (1977 - present)

Challenge is the engineering: how to create a commercially usable tool

ASTREE : highly specialized analyzer for Airbus flight control software

Polyspace (acquired by MathWorks)

a[i]

a[100];

How do we know if a[i] is safe? 0 ≤ i < 100

Symbolic simulation for all possible input values

No: sets of values may be infinite

No: detecting convergence is not decidable

Ok, but be sure it is a conservative approximation

Keep track of all possible values for all variables
at all program points ??

Describe in first-order logic??

Approximate in some decidable theory??

Abstract interpretation can provide that guarantee!

Abstract interpretation: theory

a[i]

a[100];
Some suitable numerical domains (decidable theories)

Constants n

i(fixed value or top)

Intervals []

[(ranges on variables)

n

i

Polyhedra

n

i

(linear relationships
between multiple variables)

Abstract interpretation: theory

a[i]

a[100];

Some suitable numerical domains (decidable theories)

Constants n

i(fixed value or top)

Polyhedra

n

Intervals []

[(ranges on variables)

n

i

i

(linear relationships
between multiple variables)

several weakly relational domains

Abstract interpretation: theory

Linear equalities

Approach to property checking: buffer overflow

Invariants Safety conditions

Overapproximation of the
reachable state space of
the program

constants

intervals
 (variable ranges)

polyhedra
 (variable relationships)

flow/context sensitive

generated using abstract interpretation

⊫

constructed using

size of allocated memory
blocks (stack or heap)

current offset into allocated
memory block

semantics of library functions

Abstract interpretation: practice

Abstract interpretation theory: well studied, many research papers

Abstract interpretation in practice: challenging engineering task

In theory, practice and theory are the same

main challenges:

• managing computational complexity

• trade-off between scalability and precision

In practice, they are not

CodeHawk approach:

• analyzer generator

• customization for class of applications and properties

CodeHawk Architecture

Abstract interpretation engine

Iterators

Abstract domains:

• constant
• intervals
• polyhedra
• small sets
• linear equalities

Language-independent

CodeHawk Architecture

Abstract interpretation engine

Iterators

Abstract domains:

• constant
• intervals
• polyhedra
• small sets
• linear equalities

CIL

.c program

analysis
options Translation into

CH-IF

Translation of
property into

checks

C front end

Generation of
engine directives

Definition of
interfaces

Language-independent

CodeHawk Architecture

Abstract interpretation engine

Iterators

Abstract domains:

• constant
• intervals
• polyhedra
• small sets
• linear equalities

CIL

.c program

analysis
options Translation into

CH-IF

Translation of
property into

checks

C front end Reporting

Checks on
source code

Proofs/remaining
proof obligations

Warning summary

Value Tool

HTML
XML
Text

reporting directives

Generation of
engine directives

Definition of
interfaces

Analysis information

Language-independent

CodeHawk Architecture

Abstract interpretation engine

Iterators

Abstract domains:

• constant
• intervals
• polyhedra
• small sets
• linear equalities

CIL

.c program

analysis
options Translation into

CH-IF

Translation of
property into

checks

C front end Reporting

Checks on
source code

Proofs/remaining
proof obligations

Warning summary

Value Tool

HTML
XML
Text

reporting directives

Models of
(library)
functions

User-defined
lemmas

Generation of
engine directives

Definition of
interfaces

Analysis information

Language-independent

Background on proving errors

safe range:

range computed:

(guaranteed to be
an over

approximation of
the actual range)

safe
an access is guaranteed safe if its computed
range is fully within the safe range

error
an access is guaranteed an
error if its computed
range is fully outside the
safe range

warning
if overlap with the safe range, but not
fully within the safe range, not sure
whether safe or an error, due to over
approximation

Background on proving errors

safe range:

range computed:

(guaranteed to be
an over

approximation of
the actual range)

actually reachable

error for some, but not all inputs
or error for some part of loops

error for all inputs

safe for all inputs

false positive

unproven error

Background on proving errors

safe range:

range computed:

(guaranteed to be
an over

approximation of
the actual range)

actually reachable

error for some, but not all inputs
or error for some part of loops

error for all inputs

safe for all inputs

false positive

unproven error

increased precision
safe

error

Case studies

1. NIST SAMATE benchmarks 115 - 1278

2. NIST SAMATE benchmark 1291

1164 small programs (5 - 20 l.o.c.) with wide variety of buffer overflows

constructed at MIT, 2004

Fragment extracted from BIND with known vulnerability

3. BOEING CASE STUDY
Example flight software developed on a prior research project

0

750

1,500

2,250

3,000

actual Bug-finding tool CodeHawk

error warning safe

1724

884 613

271 false negatives
(31%)

proven safe

1707

proven error

862

17 false positives
(2.0%)nu

m
be

r
of

 c
he

ck
s

22 unproven
errors
(2.5 %)

Results for SAMATE benchmarks 115-1278

12%
1%

21%

66%

Concrete Intervals Polyhedra Indirect

SAMATE small benchmarks
115-1278

(2569 proven checks)

Use of Domains

CodeHawk case study: BIND - 2

source: NIST SAMATE Reference Dataset -- benchmark 1291

statistics: 750 lines of code ; 615 statements

program fragment
 - extracted from BIND by Zitser et al (MIT)
 - includes a reported exploitable vulnerability

BIND (Berkeley Internet Name Domain) is the most commonly used
DNS server on the Internet

Wikipedia

Why do we care?

Apply CodeHawk

out-of-the-box analysis results:

Summary of the results:

130 buffer access checks proven safe

 2 buffer access checks proven unreachable

 67 buffer access checks without proof

Analysis time: 52 sec

Analysis Results on the Source Code

Summary of Warnings

Summary of Warnings

29 warnings:

n <= some upper bound

Find root cause of 29 warnings

The dn_expand() function expands the compressed domain name
comp_dn to a full domain name, which is placed in the buffer exp_dn of
size length.

dn_expand: Derive assumption from documentation

int dn_expand(unsigned char *msg,
 unsigned char *eomorig,
 unsigned char *comp_dn,
 unsigned char *exp_dn,
 int length);

Upon successful completion, the dn_expand subroutine returns
the size of the expanded domain name.

Assumption

return-value ≤ length

Add assumption to the analyzer:

now: 5 lines of Ocaml code

new design: 1 line in external model repository

Before:

130 buffer access checks proven safe

 2 buffer access checks proven unreachable

 67 buffer access checks without proof

After adding model for dn_expand:

159 buffer access checks proven safe

 2 buffer access checks proven unreachable

 38 buffer access checks without proof

38 Warnings left

The new results

All assumptions are recorded

O[p], O[comp_dn]

comp_size:
 result of library function

lookup documentation

add the assumptions

38 More Warnings

Original Summary of the results:

130 buffer access checks proven safe

 2 buffer access checks proven unreachable

 67 buffer access checks without proof

New Summary of the results:

195 buffer access checks proven safe

 2 buffer access checks proven unreachable

 2 buffer access checks without proof

Only 2 More Warnings

Value Tool

Case study: Summary

Result: 199 buffer access checks
 130 proven safe
 67 warnings

/* create the signature file this model needs */

int createSig (u_char *buf) {
 u_char *p;
 char *temp, *temp1;
 u_char *comp_dn, *comp_dn2;
 char exp_dn[200], exp_dn2[200];
 u_char **dnptrs, **lastdnptr, **dnptrs2;
 int i,len = 0, comp_size;
 u_long now;

 dnptrs = (unsigned char **) malloc(2 * sizeof(unsigned char *));
 dnptrs2 = (unsigned char **) malloc(2 * sizeof(unsigned char *));

 comp_dn = (unsigned char *) malloc(200*sizeof(unsigned char));
 comp_dn2 = (unsigned char *) malloc(200*sizeof(unsigned char));

 temp1 = (char *) malloc(400*sizeof(char));

 temp = temp1;

 p = buf;

 strcpy(temp, "HEADER JUNK:");

 len += strlen(temp);

 while (*temp != '\0')
 *p++ = *temp++;

 strcpy(exp_dn, "lcs.mit.edu");

 *dnptrs++ = (u_char *) exp_dn;
 *dnptrs-- = NULL;

 lastdnptr = NULL;

 printf("Calling dn_comp..\n");
 comp_size = dn_comp((const char *) exp_dn, comp_dn, 200, dnptrs, lastdnptr);
 printf("uncomp_size = %d\n", strlen(exp_dn));
 printf("comp_size = %d\n", comp_size);
 printf("exp_dn = %s, comp_dn = %s\n", exp_dn, (char *) comp_dn);

 for(i=0; i<comp_size; i++)
 *p++ = *comp_dn++;

 len += comp_size;

 PUTSHORT(24, p); /* type = T_SIG = 24 */
 p += 2;

 PUTSHORT(C_IN, p); /* class = C_IN = 1*/
 p += 2;

 PUTLONG(255, p); /* ttl */
 p += 4;

 PUTSHORT(30, p); /* dlen = len of everything starting with the covered byte (the length

of the entire resource record... we lie about it

 */
 p += 2;

 len += 10;

 PUTSHORT(15, p); /* covered type */
 p += 2;

 PUTSHORT(256*2, p); /* algorithm and labels.. MAKE ALG = 2,i.e default ALG*/
 p += 2;

 PUTLONG(255, p); /* orig ttl */
 p += 4;

 now = time(NULL);

 printf("Signing at = %d\n", now);
 PUTLONG(now+20000, p); /* expiration time */
 p += 4;
 PUTLONG(now, p); /* time signed */
 p += 4;

 PUTSHORT(100, p); /* random key footprint */
 p += 2;

 len += 18;

 strcpy(exp_dn2, "sls.lcs.mit.edu"); /* signer */

 *dnptrs2++ = (u_char *) exp_dn2;
 *dnptrs2-- = NULL;
 lastdnptr = NULL;

 printf("Calling dn_comp..\n");
 comp_size = dn_comp((const char *) exp_dn2, comp_dn2, 200, dnptrs2, lastdnptr);
 printf("uncomp_size = %d\n", strlen(exp_dn2));
 printf("comp_size = %d\n", comp_size);
 printf("exp_dn2 = %s, comp_dn2 = %s\n", exp_dn2, (char *) comp_dn2);

 len += comp_size;

 for(i=0; i<comp_size; i++)
 *p++ = *comp_dn2++;

 for(i=0; i<11; i++)
 {
 PUTLONG(123, p); /* fake signature */
 p += 4;
 len += 4;
 }

 return (p-buf);

}

Apply CodeHawk out-of-the-box

Value tool aids in final diagnosis

29 eliminated by dn_expand model

36 eliminated by dn_comp model

65 warnings eliminated in two steps:

After fixing the bug

/* create the signature file this model needs */

int createSig (u_char *buf) {
 u_char *p;
 char *temp, *temp1;
 u_char *comp_dn, *comp_dn2;
 char exp_dn[200], exp_dn2[200];
 u_char **dnptrs, **lastdnptr, **dnptrs2;
 int i,len = 0, comp_size;
 u_long now;

 dnptrs = (unsigned char **) malloc(2 * sizeof(unsigned char *));
 dnptrs2 = (unsigned char **) malloc(2 * sizeof(unsigned char *));

 comp_dn = (unsigned char *) malloc(200*sizeof(unsigned char));
 comp_dn2 = (unsigned char *) malloc(200*sizeof(unsigned char));

 temp1 = (char *) malloc(400*sizeof(char));

 temp = temp1;

 p = buf;

 strcpy(temp, "HEADER JUNK:");

 len += strlen(temp);

 while (*temp != '\0')
 *p++ = *temp++;

 strcpy(exp_dn, "lcs.mit.edu");

 *dnptrs++ = (u_char *) exp_dn;
 *dnptrs-- = NULL;

 lastdnptr = NULL;

 printf("Calling dn_comp..\n");
 comp_size = dn_comp((const char *) exp_dn, comp_dn, 200, dnptrs, lastdnptr);
 printf("uncomp_size = %d\n", strlen(exp_dn));
 printf("comp_size = %d\n", comp_size);
 printf("exp_dn = %s, comp_dn = %s\n", exp_dn, (char *) comp_dn);

 for(i=0; i<comp_size; i++)
 *p++ = *comp_dn++;

 len += comp_size;

 PUTSHORT(24, p); /* type = T_SIG = 24 */
 p += 2;

 PUTSHORT(C_IN, p); /* class = C_IN = 1*/
 p += 2;

 PUTLONG(255, p); /* ttl */
 p += 4;

 PUTSHORT(30, p); /* dlen = len of everything starting with the covered byte (the length

of the entire resource record... we lie about it

 */
 p += 2;

 len += 10;

 PUTSHORT(15, p); /* covered type */
 p += 2;

 PUTSHORT(256*2, p); /* algorithm and labels.. MAKE ALG = 2,i.e default ALG*/
 p += 2;

 PUTLONG(255, p); /* orig ttl */
 p += 4;

 now = time(NULL);

 printf("Signing at = %d\n", now);
 PUTLONG(now+20000, p); /* expiration time */
 p += 4;
 PUTLONG(now, p); /* time signed */
 p += 4;

 PUTSHORT(100, p); /* random key footprint */
 p += 2;

 len += 18;

 strcpy(exp_dn2, "sls.lcs.mit.edu"); /* signer */

 *dnptrs2++ = (u_char *) exp_dn2;
 *dnptrs2-- = NULL;
 lastdnptr = NULL;

 printf("Calling dn_comp..\n");
 comp_size = dn_comp((const char *) exp_dn2, comp_dn2, 200, dnptrs2, lastdnptr);
 printf("uncomp_size = %d\n", strlen(exp_dn2));
 printf("comp_size = %d\n", comp_size);
 printf("exp_dn2 = %s, comp_dn2 = %s\n", exp_dn2, (char *) comp_dn2);

 len += comp_size;

 for(i=0; i<comp_size; i++)
 *p++ = *comp_dn2++;

 for(i=0; i<11; i++)
 {
 PUTLONG(123, p); /* fake signature */
 p += 4;
 len += 4;
 }

 return (p-buf);

}

Independently checkable
proofs for all buffer accesses

No mention of abstract interpretation !!

You don’t need to be an expert in formal methods
or abstract interpretation to use an

abstract-interpretation-based analyzer

Domains Used

Domains required for proofs of safety:

Concrete (constants): 7

Intervals: 150

Polyhedra: 40

12%
1%

21%

66%

Concrete Intervals Polyhedra Indirect

SAMATE small benchmarks
115-1278

(2569 proven checks)

20%

76%

4%

SAMATE medium benchmark 1291

Use of Domains

Boeing Case Study

Example flight software from Boeing developed on a prior research project that
included contributions from a group of academic researchers

Statistics: 2069 lines of code (4 files) ; 2034 statements

Apply CodeHawk

out-of-the-box analysis results:

Summary of the results:

3232 buffer access checks proven safe

2952 buffer access checks without proof

Analysis time: > 20 min

interpn

main

System Structure

Divide and conquer

Summary of the results:

2189 buffer access checks proven safe

299 buffer access checks without proof

Analysis time: ~ 3 min

Warnings in hifi_Data.c:

array access within struct

Expand structs: Create new variables for all struct fields

Result: eliminates 84 warnings

hifi_Data.c: Create more variables

L = k + some floating point operation (v) ;

Lemma: ∀ v . -1 ≤ (v) ≤ 1

L = [-∞ , ∞]

plant.c: Introduce lemmas

L = [min(k) -1 , max(k) + 1]

use of lemma

use of lemma

Use of Lemmas

Result:

hifi_Data.c 84 warnings eliminated by struct expansion

plant.c 66 warnings eliminated by introduction of lemma

0 warnings left

8 warnings left

unproven errors

Analyze interpn standalone:

Intervals: 141 warnings

Polyhedra: 108 warnings

14 sec

3 min

Analyze interpn standalone

We need context: Define the interface

interpn(double **X, double *Y, double *x, S s)

typedef struct {
int dim;
int *points;
} S;

size(s.points) = s.dim

size(x) = s.dim

size(X) = s.dim

∀ i: 0 .. s.dim-1 . size(X[i]) = s.points[i]

size(Y) = ∏i = 0..s.dim-1 s.points[i]

4 + s.dim verification conditions for every call to interpn

(not included in results yet)

Provide context

Analyze interpn standalone:

Intervals: 141 warnings

Polyhedra: 108 warnings

14 sec

3 min

Provide context:

Polyhedra: 74 warnings 3 min

Custom size domain: 35 warnings 3 min

Boeing Case Study: Analysis Summary

We started with: 2952 checks without proof Analysis time: > 20 min

Decomposition: 299 checks without proof

Elimination of false positives

Struct expansion: 84

Lemmas 66

Polyhedra 33

Context assumptions 34

Custom size domain 39

Checks without proof left: 43 (8 of which are confirmed bugs) Analysis time: 6 min

Custom analyzer that can be reused on software with the same architecture

Application of generic
buffer overflow analyzer

Too many warnings

Too many false positives

User is overwhelmed

Analysis of systems of systems

Analysis of systems of systems

Use backward analysis to

• relate warnings to user/
device input values

• relate warnings to
function arguments

• collect warnings that
originate from the same
input condition

• identify input conditions
that eliminate warnings

• assist the user in
constructing an API

Position

Bug finders
Theorem
Provers CodeHawk

Generality

Scalability

Application to source
code

Usable by software
engineers

Assurance

Possibility for
independent checking

of evidence

++ _ _ +

++ _ _ +

++ ? ++

++ _ _ +

_ _ ++ ++

_ _ ++ ++

Planned enhancements

SBIR driven

• SAGE: Desktop tool to visualize intermediate results, gain insight in the code

• IFEX: verification of systems of systems

Customer driven

• Boeing

• Lockheed Martin
Application-level properties

Market-driven

• GCC front end: provide support for other programming language (Java, C++)

• More language-level properties

• Architectural customization to reduce cost of certification

Conclusions

Promising and proven technology

• Key distinction for assurance: no false negatives

• Can be used for verification and to find defects

• Can be specialized for customer needs

Current situation

• New abstract interpretation engine design is complete

• Ready for customer requests

Technology transfer

• Three-day class to learn first-level customization

• No formal methods or abstract-interpretation knowledge required for use

