
	  	  

 
Science of Security Lablets Hard Problems 

  

1. Leveraging the torrents of data. 
Challenge:  Torrents of data related to security are becoming available.  Current analytical 
techniques emphasize results over causation of the findings and, as such, may not reveal 
fundamental data relationships or contribute to the science of security. 
 
Analytic techniques can be used to identify behavior patterns and anomalies (such as fraud or a 
security breach).  Analytic techniques are often used for applications that emphasize results over 
causation of the findings. For example, analytic techniques may be used to determine patterns 
which population is most receptive to a particular postcard advertisement.  The identified patterns 
may involve an almost infinite number of combinations of the many variables.  Explaining the 
behavior (i.e. examining causation) by hypothesizing about the combinations of variables may not 
be economical and/or of interest to a user.  A business, or an agency, may choose to act on the 
behavior without a focus on causation provided that the pattern has a high empirical probability 
of correctly identifying an issue. As such, current analytic techniques may not support the 
identification and advancement of fundamental scientific principles based upon an analysis of 
causation, or indeed science may not fully support use of the methods or conclusions based on 
those methods.  The move from heuristics to science in analytics is fundamental to the 
advancement of the science of security. 
 

2. Measuring and modeling system behavior.  
Challenge:   Malicious use of a system must be automatically distinguishable from benevolent use 
of a system based upon security metrics and models.    

Automatically distinguishing between malicious and benevolent use of a system necessitates 
metrics and modeling of cyber-physical systems.  Metrics are used to quantify dependent (some 
of which interrelate and deal with the system environment) and independent variables in the 
models with the aim of quantifying the resilience of software artifacts to cyber-attacks.  Model 
development drives the exploration of hypotheses about system behavior.  Models of cyber-
physical systems need capture the bidirectional influence of cyber and physical on each other, the 
bidirectional influences on each other, and characterization of unique attacks where manipulation 
of one system impacts the other.  With such models we address development of analysis of 
resiliency of cyber-physical systems to attacks. 
 
Research goals include improving the quality of metrics in the dual sense of (1) improved 
approximation to potential assured results, and (2) improved efficiency in evaluating artifacts and 
actions to develop metric values.  Advancement on this hard problem contributes to the science in 
two ways: (1) improved ability to evaluate hypotheses through the use of better metrics and 
measurements, and (2) improved measurement capability, both in support of further science and 
in support of practice. 

 
3. Understanding attack behavior.  

Challenge:  The human component of cyber-security introduces variance and uncertainty. 
 
The interactions of human users with a system, including the framework of metaphors on which 
these are based, can be modeled as features of the operating environment and as features of the 
system itself.	  Researchers have developed methods to perform sophisticated task analysis for a 



	  	  

given problem domain, including security analytics (e.g., Designing for Situation Awareness: An 
Approach to User-Centered Design, M. R. Endsley). Behavioral psychology has methods to 
capture human mental models, which can then be used to describe the step-by-step strategies an 
analyst uses to solve specific tasks. Deviation from these patterns would suggest unexpected 
activity within a system, and one that may warrant further inspection. Once behavioral models are 
developed, they will need to be evaluated in the context of real analysts and security domains, 
with a particular focus on identifying commonalities across tasks and users. A final step would be 
to develop methods to integrate these models into real-world security systems.  For example, 
given enough basic provenance information, and real-time information about user keystrokes, 
their order and their timings, or user mouse movements, it is currently possible to identify 
individual users, and their mood (e.g., anger, fear, happiness), through involuntary physiology 
and psychology driven changes in their typing and mouse movement behaviors.  This type of 
work could be extend to “intent” that may be associated with security breaches and attacks.  In 
short, we must infer behavior through low-level data analytics and the development of prediction 
models.  These models of interactions include computer systems, the humans using them and the 
humans attacking them, with the goal of analyzing the resiliency of the computer system and its 
defenders against cyber attack.	  
 

4. Scalability in the engineering of assured secure systems 
Challenge: Assuring security and quality in software-reliant systems is not only increasingly 
critical to operational success, but it is also increasingly challenging due to the continued growth 
in complexity, scale, and criticality. Success in developing and evaluating critical and 
infrastructural systems demands high levels of sophistication in the technical aspects of 
cybersecurity, software and hardware design, modeling and analysis for software and hardware, 
and human-systems interaction. Game-changing advances in development and assurance 
practices can address persistent challenges such as enabling the rapid evolution of assured 
systems, complex interlinking of multiple assured systems, assurance for self-adaptive and 
autonomous systems, integration of assured components with established socio-technical 
ecosystems, and the co-development of systems and the assurance cases that support them.    
 
As systems grow in complexity and size, the challenge we face in reasoning about security 
attributes seems to grow even more rapidly. This is not surprising, given the quadratic reality of 
Metcalfe's Law, which observes that the number of potential interactions among components 
grows with the square of the number of components (i.e., the number of edges in a complete 
graph as a function of the number of nodes). Since security outcomes (at a technical level) derive 
from (a) the internal content of the components and (b) the overall configuration of components 
in relation to each other, a rapidly growing number of potential interactions must be considered. 
 
This challenge is exacerbated by the reality of most modern systems, which is that these larger 
numbers of components are provided through more diverse and complex supply chains to create 
and sustain those components. The diversity of sourcing, nearly unavoidable for systems that 
involve web services, mobile devices, and other established socio-technical ecosystems, suggests 
that assurance cases for complex multi-component systems must increasingly rely on direct 
evaluation of the product rather than current practices which rely more heavily on trust in the 
provider and on process compliance. 
 
There are further difficulties. Current regimes for certification and accreditation tend to focus on 
particular snapshots of system configurations. The reality of many modern systems is that they 
undergo continuous evolution and enhancement, are often self-adapting (e.g., in response to 
security threats), and include capability for dynamic reconfiguration (e.g., new device drivers, 
app installs, dynamic loading of compilation units, etc.). Additionally, systems increasingly 



	  	  

interact with other systems (“system of systems”), which creates a composition problem a much 
larger component scale. And, furthermore, larger systems are more likely to undergo a continual 
evolution in response to changes in the mission and operating environments, the technology 
infrastructure, doctrine, and other factors.  
 
 When evaluation regimes are not able to arrive at assurance judgments, systems may need to be 
simplified, at a cost to capability, agility, interlinking, performance, or other attributes significant 
to the mission. This suggests the need for significant improvements to our ability to construct 
secure systems and to assess, measure, and enhance security-related attributes of systems.  
 
Composability is the principal key to scaling in overall size/complexity, in numbers of 
components, and in the diversity of sourcing of those components. Composition issues exist at 
nearly every level of software structure, ranging from large-scale frameworks and subsystems, to 
APIs and architecture, to individual code elements. Additionally, composition issues and 
challenges vary according to the particular quality attribute being assessed.  
 
It is generally recognized that, in the general case of security evaluation, when two components 
are combined into an aggregate, the entire aggregate must be evaluated as a whole, and, 
additionally, independent assessments of the two components may not be useful to support this 
evaluation. In other words, all bets are off when systems are integrated or configured. But when 
models, components, and analyses are suitably arranged, it can be possible to achieve 
composability, wherein the independent assessments of components can contribute directly to an 
aggregate assessment without a need to reevaluate the component internals. In other words, it is 
not a necessary outcome that the assessments become invalid when components are combined. 
This kind of composability has been established for several significant security-related properties. 
For example, compositional type safety is now an established feature of nearly all mainstream 
languages (C++, Java, C#, Ada), but in the years prior to the emergence of these languages there 
were questions regarding whether this was technically feasible. Similarly, composition is now 
possible for an increasing range of critical quality attributes.  
 
For many security-related attributes, such as related to confidentiality and locality of data, 
integrity of data, and availability of services, composability is, in general, difficult to achieve. But 
there is a growing set of approaches to modeling, analysis, and language, and these are offering 
great promise. This set is growing as a consequence of often deeply technical breakthroughs in 
the underlying theory and science, which inform particular design decisions in the development 
of modeling and analytic tools. These, in turn, inform the design of programming and evaluation 
practices as well as the languages and tools that support these. 
 
This concept of composability encompasses dynamic and adaptive designs—it includes not only 
static models and structures defined during a development process, but also capability to scale 
and compose results from complementary dynamic models and tools  that support self-adaptation 
of operational systems. 
 

5. Secure collaboration and analytics. 
Challenge:  Systems must to be developed to be legal- and policy-compliant and privacy 
preserving, complicated by collaborative use of the system by multiple parties.   These same 
systems must not be so over constrained to support this collaboration that the utility of data 
analytics is unnecessarily reduced.      
 
Collaboration is complex because the collaborating parties are autonomous and heterogeneous: 
they can exercise different policies and laws, requirements, and risk aversion.  Collaboration 



	  	  

exacerbates security risks because of such diversity, especially because the party’s might 
inadvertently harm each other even when they are cooperative. The key problem is this: Security 
presumes that there is some correct or good outcome that we wish to protect and which an 
attacker may disrupt. Today, these standards of correctness are conceptualized at a low level and 
often miss what stakeholders need. Instead, we need a standard of correctness that captures the 
normative relationships between collaborating parties: that is, expresses their interactions in a 
technology-independent manner and yet maps to specific technical realizations. Such a 
representation would help infer whether one collaborating party may violate the norms of another, 
whether inadvertently or maliciously.  This leads to two technical sub-problems. First, how may 
we model such normative relationships perspicuously? Second, how may we analyze combined 
data from multiple, possible interdependent sources to understand which norms are applicable for 
determining compliance and which are violated.  Additionally, the analysis and combination of 
data from multiple, possible interdependent data sources may create knowledge for which the 
compliance of the use and sharing must be determined.  Finally, big data privacy control requires 
us to rethink privacy protection in almost aspects, including privacy models, utility models, 
anonymization algorithms and paradigms, and evaluation metrics and methodologies. 
 

6. Usability in development and evaluation of systems 
Challenge: From a purely technical perspective, the interventions required to enhance scalability 
and flexibility in assured development may be extensive for complex systems with diverse 
security-related assurance attributes. How can the tools used by professional developers and 
evaluators be engineered in a way that acknowledges the diverse technical backgrounds of those 
who contribute to systems—and also recognizes the realities of the development process and, in 
particular, its measures and rewards?   
 
Consideration of this leads to an identification of two features that are characteristic of success. 
The first of these is a need for practicing developers and evaluators to be able to readily grasp the 
metaphors behind the technical models used in the process of design and analysis. That is, the 
presentation to human developers and evaluators must be intellectually approachable and, 
ultimately, “intuitively comfortable”—regardless of the technical sophistication and depth of the 
underlying mathematics of the modeling and analysis embodied in the tool, language, and model 
designs.  
 
The second feature characteristic of success is an incremental approach. The idea is that 
increments of effort by developers should be rewarded by increments of value back to them, in 
the form of enhancements to productivity or accretion of measurable evidence in support of an 
assurance claim. The purpose of this is to enhance the intrinsic motivation for developers to apply 
evidence-based techniques on a routine basis in development, enhancement, and evaluation.  
 
The rationale for this kind of incrementality is the simple economics of cost, benefit, time, and 
risk. Suppose, from the developer or evaluator perspective, there is an apparent uncertainty 
associated with the benefits of a particular action related to assurance. In this case, the action is 
less likely to be taken if the benefits are far in the future or if the action itself is costly (e.g., in 
taking time away from other activities with a more immediate reward). In these circumstances, 
the present value of the benefits may be too low or have too high a variance. These, combined 
with the lack of immediate benefit, may deter or defer a developer or evaluator from taking the 
action. We focus, therefore, on actions that are more granular and for which the benefits can be 
made more immediate. This enables a more explicitly motivated engagement by developers and 
evaluators, with greater potential for adaptability and hence the extent and immediacy of the 
benefit. Motivation for these security and quality practices is further enhanced by capacity for 
better measurement of immediate benefits and prediction of potential benefits.  



	  	  

 
Success in usability for developers and evaluators could greatly facilitate evaluation practices, 
including both increasing the overall level of capability for highly critical systems and, 
additionally, greatly enhancing productivity and agility in evaluation and certification by 
providing technical and tool support for the concurrent development of system capabilities and 
the assurance cases to support their acceptance for deployment. 
  

7. Usability for human operators 
Challenge: Most modern complex systems include participation by human operators within the 
engineered system. How can the models, metaphors, and interactions be constructed to lead to 
less human error in the operation of systems and enhanced operator awareness to better thwart 
social-engineering and insider attacks.  
 
One way to frame the goal is to design metaphors and interaction mechanisms such that there is 
an effective connectivity among the actuality of system operation, the policies and metaphors in 
the minds of the operators, and policy intent of the system designers.  For example, how can a 
particular intended policy be realized in configuring and operating a system? And: For a given 
system configuration, what is the actual policy realized?  The goal, in other words, is to define 
models that enhances the semantic connection between the implemented security and safety 
policies and the models in the minds of the human operators and users. 
 

8. Prediction of the rate of occurrence of security breaches. 
Challenge:  Software organizations need to assess whether software is ready to release given the 
desired security goals for the product. 

Analysis techniques for estimation of security metrics are based on huge state spaces where most 
of the metric values are derived from states rarely encountered.  The rate of occurrence of 
security breaches will relate to the degree to which the system has been fortified to prevent both 
random and systematic attacks.  The rate of occurrence due to systematic attacks is may increase 
significantly faster than the volume of use of the system.  More popular software systems and 
those that process attractive data assets attract significantly more attackers.   
 
Empirical evaluation goes hand-in-hand with models and analysis. Severely lacking are 
scientifically grounded techniques in experimental design and statistical analysis of real systems 
(in the field or in a laboratory testbed) that provide measurements, which correlate well with the 
vulnerability of a system, presence of intrusion, or resistance to intrusion. 	  
	  

9. Attack-tolerant systems. 
Challenge:  Systems for which security is especially critical should be designed to a) auto-detect 
possibly correlated attacks (e.g., based on redundancy, acceptance-test, or watchdog principles); 
b) isolate or interfere with the activities of a potential or actual attack; and (3) recover a secure 
state and continue.   
 
Fault tolerant and resilient systems rely on redundancy and/or recovery to continue normal 
operation despite the presence of hardware or software faults.  Similarly, the science behind an 
attack-tolerant system would recognize anomalies and identify user “intent”, as well as identify 
appropriate defense and isolation mechanisms, such as isolating the using to a redundant system. 
For example, during this time the attacker could continue what he/she believes is regular use 
while the activities could be carefully analyzed and logged for later study.  If a suspected attacker 
is later deemed benevolent, their use could be resumed on the main system.   
 



	  	  

10. Isolation of attack-susceptible components  
Challenge:  Systems should be designed to minimize the adversary surface of a system.  
 
The presence of human users of the system will prevent a secure system from having a closed 
form.  However, a system could be architected such that some components need to account for 
the unpredictability of human users (attack-susceptible) and others can be isolated and then able 
to have more closed forms of security (trusted).  The goal would be to architect system to 
maximize trusted components and minimize attack-susceptible components.     
 

11. Security economics 
Challenge: System developers do not understand the implications of their development choices on 
the security of a system; system purchasers do not demand security of their vendors/suppliers and 
do not understand the cost of their security choices; system design has to try and optimize among 
competing concerns such as cost, reliability, availability, performance, safety, and security .  
 
Lack of understanding of how security attributes affect and are affected by other system attributes 
exists at all levels of the system, from circuitry to applications. System developers should better 
understand the economic impact of their development design choices, processes, practices and 
testing on the security of software-intensive systems and be better able to make tradeoffs between 
alternatives to obtain desired levels of security.   System developers should also understand how 
design decisions in systems architecture, application programming interface (API) structuring, 
language design, and other engineering elements influences the capacity to reason about a system 
with respect to each of these various attributes. It is evident, for example, that types in 
programming languages have a tremendous benefit in reasoning about data access and 
representational integrity. Another example is the role of finite state models to model protocols, 
object state, and other characteristics.  System developers should also understand, for particular 
attributes, reasoning mechanisms for supporting assessment of a design, model, or system 
component with respect to a particular attribute. This includes understanding what sorts of 
specifications must be made at the perimeter of components and within components in order to 
express intent and support the reasoning process. 
 
System purchasers should understand the importance of demanding and then paying for secure 
software solutions based upon the economic impact of buying insecure software.       

	  
   
 

 

 

 

	  


