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The coming of age of formal verification tools

Formal, tool-assisted verification of critical software:

an old academic dream

. . . that is slowly entering industrial practice.

Motivations:

Stronger assurance.

Saves on testing.

Regulations (Common Criteria EAL7; DO-178C).
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Some success stories in verification of avionics code
(e.g. fly-by-wire systems)

Simulink, Scade

C code

Executable
AiT WCET

(precise time bounds)

Astrée
(absence of run-time errors,

incl. floating-point)

Caveat
(program proof)

Rockwell-Collins toolchain
(model-checking + PVS proof)
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Trust in formal verification

Simulink, Scade

Code generator

C code

Compiler

Executable

Simulation

Model-checking

Program proof

Static analysis

Testing

?

?

Are verification tools semantically sound?
Couldn’t compilers and code generators miscompile correct source codes?
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Can you trust your compiler?
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Miscompilation happens

NULLSTONE isolated defects [in integer division] in twelve of twenty
commercially available compilers that were evaluated.

http://www.nullstone.com/htmls/category/divide.htm

We tested thirteen production-quality C compilers and, for each, found
situations in which the compiler generated incorrect code for accessing
volatile variables.

E. Eide & J. Regehr, EMSOFT 2008

To improve the quality of C compilers, we created Csmith, a
randomized test-case generation tool, and spent three years using it to
find compiler bugs. During this period we reported more than 325
previously unknown bugs to compiler developers. Every compiler we
tested was found to crash and also to silently generate wrong code
when presented with valid input.

X. Yang, Y. Chen, E. Eide & J. Regehr, PLDI 2011
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An example of compiler optimization

Consider:

double dotproduct(int n, double * a, double * b)

{

double dp = 0.0;

int i;

for (i = 0; i < n; i++) dp += a[i] * b[i];

return dp;

}

Compiled with the Tru64/Alpha compiler and manually decompiled back
to C. . .
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Are miscompilation bugs a problem?

For ordinary software:

Compiler-introduced bugs are negligible compared with the bugs in
the program itself.

Programmers rarely run into them.

When they do, debugging is very hard.
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Are miscompilation bugs a problem?

For critical software validated by testing only:

Good testing should find all bugs, even those compiler-introduced.

Optimizations can complicate test plans.
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Are miscompilation bugs a problem?
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For critical software validated by review, analysis & testing:
(e.g. DO-178 in avionics)

Manual reviews of (representative fragments of) generated assembly.

Turning all optimizations off to get traceability.

Reduced usefulness of formal verification.
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Formal verification of compilers

A radical solution to the miscompilation problem:

Apply program proof to the compiler itself to prove that it preserves the
semantics of the source code.

After all, compilers are complicated programs with a simple specification:

If compilation succeeds, the generated code should behave as
prescribed by the semantics of the source program.

As a corollary, we obtain:

Any safety property of the observable behavior of the source
program carries over to the generated executable code.
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An old idea. . .

Mathematical Aspects of Computer Science, 1967
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An old idea. . .

Machine Intelligence (7), 1972.
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The CompCert project
(X.Leroy, S.Blazy, et al)

Develop and prove correct a realistic compiler, usable for critical embedded
software.

Source language: a very large subset of C.

Target language: PowerPC/ARM/x86 assembly.

Generates reasonably compact and fast code
⇒ careful code generation; some optimizations.

Note: compiler written from scratch, along with its proof; not trying to
prove an existing compiler.

X. Leroy (INRIA) Verified tools HCSS 2011 14 / 45



The subset of C supported

Supported natively:

Types: integers, floats, arrays, pointers, struct, union.

Expressions: all of C, including pointer arithmetic.

Control: if/then/else, loops, goto, regular switch.

Functions, including recursive functions and function pointers.

Dynamic allocation (malloc and free).

Volatile accesses.
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The subset of C supported

Not supported at all:

The long long and long double types.

Unstructured switch (Duff’s device), longjmp/setjmp.

Variable-arity functions.

Supported through (unproved!) expansion after parsing:

Block-scoped variables.

typedef.

Bit-fields.

Assignment between struct or union.

Passing struct or union by value.
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The formally verified part of the compiler

CompCert C Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

MachAsm

side-effects out

of expressions

type elimination

loop simplifications

stack allocation

of “&” variables

instruction

selection

CFG construction

expr. decomp.

register allocation (IRC)

linearization

of the CFG

spilling, reloading

calling conventions

layout of stack frames

asm code

generation

Optimizations: constant prop., CSE, tail calls,

(LCM), (Software pipelining)

(Instruction scheduling)

X. Leroy (INRIA) Verified tools HCSS 2011 17 / 45



Formally verified in Coq

After 50 000 lines of Coq and 4 person.years of effort:

Theorem transf_c_program_is_refinement:

forall p tp,

transf_c_program p = OK tp ->

(forall beh, exec_C_program p beh -> not_wrong beh) ->

(forall beh, exec_asm_program tp beh -> exec_C_program p beh).

Behaviors beh = termination / divergence / going wrong
+ trace of I/O operations (syscalls, volatile accesses).
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Compiler verification patterns (for each pass)

transformation transformation

validator

×

transformation

untrusted solver

×

checker

Verified transformation Verified translation validation

External solver with verified validation

= formally verified

= not verified

X. Leroy (INRIA) Verified tools HCSS 2011 19 / 45



Programmed (mostly) in Coq

All the verified parts of the compiler are programmed directly in Coq’s
specification language, using pure functional style.

Monads to handle errors and mutable state.

Purely functional data structures.

Advantage: no need for a program logic!
(Implementations = functional specifications.)

Executable via automatic extraction Coq → Caml
and Caml compilation.

X. Leroy (INRIA) Verified tools HCSS 2011 20 / 45



The whole CompCert compiler

AST C

AST Asm

C source

AssemblyExecutable

parsing, construction of an AST

type-checking, de-sugaring

V
erifi

ed
co

m
p

iler

printing of

asm syntax

assembling

linking

Type reconstruction

Graph coloring

Code linearization heuristics

Proved in Coq
(extracted to Caml)

Not proved
(hand-written in Caml)

Part of the TCB

Not part of the TCB
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Performance of generated code
(On a PowerPC G5 processor)
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Current status

At this stage of the CompCert experiment, the initial goal – proving
correct a nontrivial compiler – appears feasible.

(Within the limitations of today’s proof assistants such as Coq.)
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Some directions for future work

Verifying
program provers

& static analyzers

Other source languages
More

assurance
More

optimizations

“Bootstrap”
(proved extraction)

Shared-memory
concurrency

Connections w/

hardware
verification

Other source languages besides C:
functional (Mini-ML); OO (fragments of C++); Spark Ada?; reactive?
Problem: verifying run-time systems (→ A. Tolmach’s talk).
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optimizations

“Bootstrap”
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concurrency

Connections w/

hardware
verification

Prove or validate more of the TCB:
parsing, typing, elaboration, assembling, linking, . . .
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Some directions for future work

Verifying
program provers

& static analyzers

Other source languages
More

assurance
More

optimizations

“Bootstrap”
(proved extraction)

Shared-memory
concurrency

Connections w/

hardware
verification

Add advanced optimizations, esp. loop optimizations.
Verified validation as the approach of least resistance.
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Some directions for future work

Verifying
program provers

& static analyzers

Other source languages
More

assurance
More

optimizations

“Bootstrap”
(proved extraction)

Shared-memory
concurrency

Connections w/

hardware
verification

Increase confidence in the tools used to build CompCert:
Coq’s extraction facility + the Caml compiler.
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Some directions for future work

Verifying
program provers

& static analyzers

Other source languages
More

assurance
More

optimizations

“Bootstrap”
(proved extraction)

Shared-memory
concurrency

Connections w/

hardware
verification

Race-free programs + concurrent separation logic (→ A. Appel’s talk)
or: racy programs + hardware memory models (P. Sewell et al).
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Some directions for future work

Verifying
program provers

& static analyzers

Other source languages
More

assurance
More

optimizations

“Bootstrap”
(proved extraction)

Shared-memory
concurrency

Connections w/

hardware
verification

Formal specs for architectures & instruction sets, as the missing link between
compiler verification and hardware verification.
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Some directions for future work

Verifying
program provers

& static analyzers

Other source languages
More

assurance
More

optimizations

“Bootstrap”
(proved extraction)

Shared-memory
concurrency

Connections w/

hardware
verification

Discussed next.
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For more information

http://compcert.inria.fr/

Research papers.

Complete source & proofs available for evaluation and research purposes.

Compiler runs on / produces code for
{Linux,MacOSX,Windows+Cygwin} / {PowerPC, ARM, x86}.
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Can you trust your verification tools?
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Trust in formal verification (again)

Simulink, Scade

Code generator

C code

Compiler

Executable

Simulation

Model-checking

Program proof

Static analysis

Testing
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Requirements on verification tools
(Static analyzers, program provers, model-checkers)

When used as sophisticated bug-finders: everything goes!

[Coverity] did not verify the absence of errors but rather tried to
find as many of them as possible. Unsoundness let us focus on
handling the easiest cases first, scaling up as it proved useful. [...]
Circa 2000, unsoundness was controversial in the research
community, though it has since become almost a de facto tool
bias for commercial products and many research projects.

When used to establish properties of programs and remove the
corresponding tests: evidence of soundness is required.
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Verified verification tools: ongoing work

Deductive verification: (program proof)

Embeddings of Hoare logics and separation logics in HO logic.
(→ A. Appel’s talk, J. Andronick’s talk)

Correctness proofs for verification condition generators.

Automated theorem provers that are proved correct or generate
independently-checkable certificates.

Static analysis:

Verification of specialized analyzers, e.g. the JVM bytecode verifier.

Verification of generic abstract interpreters.
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Abstract interpretation for dummies

Execute (“interpret”) the program using a non-standard semantics that:

Computes over an abstract domain of the desired properties
(e.g. “x ∈ [n1, n2]” for interval analysis)
instead of concrete “things” like values and states.

Handles boolean conditions, even if they cannot be resolved statically.
(THEN and ELSE branches of IF are considered both taken.)
(Loops execute arbitrarily many times.)

Always terminates.
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Example of abstract interpretation with intervals

x ∈ [−∞,∞]
IF x < 0 THEN

x := 0;

x ∈ [0, 0]

ELSE IF x > 1000 THEN

x := 1000;

x ∈ [1000, 1000]

ELSE

SKIP;

x ∈ [0,∞] ∩ [−∞, 1000] = [0, 1000]

ENDIF

x ∈ [0, 0] ∪ [1000, 1000] ∪ [0, 1000] = [0, 1000]
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Example of abstract interpretation with intervals

x := 0; x ∈ [0, 0]

WHILE x <= 1000 DO

y := y + 1;

DONE

Widening heuristic to accelerate convergence
Fixpoint reached!
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Example of abstract interpretation with intervals

x := 0; x ∈ [0, 0]

WHILE x <= 1000 DO

x ∈ [0, 0] ∩ [−∞, 1000] = [0, 0]
y := y + 1;

x ∈ [1, 1]
DONE

Widening heuristic to accelerate convergence
Fixpoint reached!
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Example of abstract interpretation with intervals

x := 0; x ∈ [0, 0]

WHILE x <= 1000 DO

x ∈ ([0, 0] ∪ [1, 1]) ∩ [−∞, 1000] = [0, 1]
y := y + 1;

x ∈ [1, 2]
DONE

Widening heuristic to accelerate convergence
Fixpoint reached!
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Example of abstract interpretation with intervals

x := 0; x ∈ [0, 0]

WHILE x <= 1000 DO

x ∈ ([0, 0] ∪ [1, 2]) ∩ [−∞, 1000] = [0, 2]
y := y + 1;

x ∈ [1, 3]
DONE

Widening heuristic to accelerate convergence
Fixpoint reached!
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Example of abstract interpretation with intervals

x := 0; x ∈ [0, 0]

WHILE x <= 1000 DO

x ∈ [0,∞]
y := y + 1;

x ∈ [1,∞]
DONE

Widening heuristic to accelerate convergence

Fixpoint reached!
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Example of abstract interpretation with intervals

x := 0; x ∈ [0, 0]

WHILE x <= 1000 DO

x ∈ ([0, 0] ∪ [1,∞]) ∩ [−∞, 1000] = [0, 1000]
y := y + 1;

x ∈ [1, 1001]
DONE

Widening heuristic to accelerate convergence
Fixpoint reached!
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Example of abstract interpretation with intervals

x := 0; x ∈ [0, 0]

WHILE x <= 1000 DO

x ∈ ([0, 0] ∪ [1, 1001]) ∩ [−∞, 1000] = [0, 1000]
y := y + 1;

x ∈ [1, 1001]
DONE

Widening heuristic to accelerate convergence

Fixpoint reached!
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Example of abstract interpretation with intervals

x := 0; x ∈ [0, 0]

WHILE x <= 1000 DO

x ∈ ([0, 0] ∪ [1, 1001]) ∩ [−∞, 1000] = [0, 1000]
y := y + 1;

x ∈ [1, 1001]
DONE

x ∈ [1001,∞] ∩ [1, 1001] = [1001, 1001]

Widening heuristic to accelerate convergence

Fixpoint reached!
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Anatomy of a static analyzer based on abstract interp.
(e.g. Astrée)

A generic, domain-independent abstract interpreter,
parameterized by a hierarchy of language-independent abstract domains:

Non-relational domains (properties of a single variable):
intervals x ∈ [c1, c2]
congruences x = c1 (mod c2)

Relational domains (properties of several variables):
polyhedra

∑
cixi ≤ c

octagons
∑

cixi ≤ c with ci ∈ {−1, 0, 1}
memory and pointer domains (points-to and non-aliasing properties)

Combinations of domains:
trace partitioning
reduced product.

To be proved: the generic interpreter (easy) + each domain (difficult).
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Orthodox presentation: Galois connections

Define a lattice A,≤ of abstract states and two functions:

Abstraction function α : sets of concrete states → abstract state

Concretization function γ : abstract state → sets of concrete states

x ∈ [1, 5] ∧ y ∈ [1, 3]

α γ

To be proved: α and γ monotonic; X ⊆ γ(α(X )); and x ≤ α(γ(x)).
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Orthodox presentation: calculating abstract operators

For each operation of the language, calculate its abstract counterpart
(operating on elements of A instead of concrete values and states).

Example: for the + operator in expressions,

a1 +# a2 = α{n1 + n2 | n1 ∈ γ(a1), n2 ∈ γ(a2)}

(. . . long calculations omitted . . . )

[l1, u1] +# [l2, u2] = [l1 + l2, u1 + u2]

+# is sound and optimally precise by construction.
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Towards a mechanized proof of correctness

Problems with the orthodox approach:

α functions do not always exist

α functions are not computable

Poor theorem proving support for calculational reasoning.
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Towards a mechanized proof of correctness
(D. Pichardie, 2005, 2008; D. Cachera and D. Pichardie, 2010)

Solution 1: forget about α; use relations:

` concrete-thing ∈ abstract-thing

Solution 2: use calculations on paper and re-prove resulting definitions:

` v1 ∈ A1 ∧ ` v2 ∈ A2 =⇒ ` v1 + v2 ∈ A1 +# A2

Much heroic proof work remains:

Many, many abstract operations to prove.

Modular construction of abstract domains.

Fixpoints, with widening and narrowing.

Their termination.

Worked out for simple non-relational domains, up to intervals.
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Going further by cutting more corners

Forget about mechanically proving termination.
(Coq + classical logic can reason over partial functions.)

Validate a posteriori untrusted implementations of relational domains.
(with the help of validated decision procedures.)
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Verified validation of the polyhedra abstract domain
(D. Pichardie et al, 2010)

Computing joins ≈ convex hull algorithm.

t =

Checking a posteriori the result of a join operation = inclusion checking.

⊆ ⊇
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Verified validation of the polyhedra abstract domain
(D. Pichardie et al, 2010)

Checking inclusion between two polyhedra:

A1 ∧ · · · ∧ An︸ ︷︷ ︸
linear inequations

=⇒ B1 ∧ · · · ∧ Bm︸ ︷︷ ︸
linear inequations

This amounts to checking that the formulas

A1 ∧ · · · ∧ An ∧ ¬Bi︸ ︷︷ ︸
linear inequations

for i = 1, . . . ,m

are not satisfiable, using a decision procedure for Presburger arithmetic.
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Verified validation of the decision procedure

Lemma (Farkas)

A conjunction of linear inequations
∑

j aijxj ≤ ci for i = 1, . . . , n is
unsatisfiable if and only if there exists coefficients f1, . . . , fn such that∑

i fiaij = 0 for all j and
∑

i fici < 0.

The coefficients fi act as a certificate and can be computed by (an
untrusted implementation of) the simplex algorithm.
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Two-level verified validation

decision procedure
for unsatisfiability
of linear systems

Farkas’s lemma

Validator

Simplex
algorithm

Implementation of the
polyhedra abstract domain

Validator
Operations over

polyhedra

Proved Sound Untrusted
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Future work

Scale these approaches (verified implementations or verified validation) all
the way to an Astrée-like static analyzer.

Intervals
4

Integer 4

relational
domain

Floating-point

relational
domain

Filter
domains

Reduced product

Memory abstraction Shape analysis

Trace partitioning

Generic abstract interpreter for Clight
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In closing. . .
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Perspectives

Critical software deserves the most trustworthy tools that computer
science can provide.

The formal verification of development and verification tools for critical
software

appears within reach,

raises fascinating verification issues,

and could have practical impact.

Main challenges:

scaling up all the way to real-world usage;

taking advantage of tool verification for DO-178-like qualification.
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