
2012 Science of Security
Community Meeting
Nov. 29-30, 2012
National Harbor, MD
http://cps-vo.org/group/sosmtg

The goal of this project is to develop a general theory of compositional
security that can support the construction and analysis of secure systems
¨  Identify composition operators for systems, adversaries and properties.
¨  Develop compositional reasoning principles
¨  Apply theory to improve Web and hypervisor
 security

¨  Complex, increasingly mobile, software
architecture requires reasoning about
higher-order functions

¨  Case studies [Datta, Garg, Jia, Sen, Wing]

Compositional Security

http://www.andrew.cmu.edu/user/danupam/compositional-security.html

PIs:	
 Anupam	
 Da-a,	
 Limin	
 Jia	
 and	
 Jeanne-e	
 Wing	

Carnegie	
 Mellon	
 University	

¨  Prior work
¤  Protocol composition [Datta, Derek,

Durgin, Mitchell, Pavlovic, Roy, …]
¤  General first-order software system

composition in the presence of interface-
confined adversaries [Garg, Franklin,
Kaynar, Datta]

¨  Currently: Higher-order functions (code is
first-class data) [Jia, Garg, Datta]

Do S1+ S2 satisfy a global security
property ϕ based on local properties ψ1 of
S1 and ψ2 of S2 that are checkable
separately?

Attackers can supply code using higher-order
interfaces
•  Interfaces that take code as input (callbacks)
•  Interfaces that return code

(script in webpages)

Web security
•  Reason about properties of

(malicious) downloaded code
(M), given the specifications
of the interfaces that M is
confined to

•  The type assigned to M
allows reasoning about
systems that pass M around
as data, and invoke it later

Types specify trace properties of interfaces
•  {y:τ}<u1, u2, i>ϕ

Computation returns a value of type τ, and if the
computation executes between time u1 and u2 by
thread I, the trace satisfies ϕ

•  (τ1 → τ2) →τ3
• τ1 → (τ2 →τ3)

Hypervisor security: (guest OS and hyper-apps
require higher-order reasoning principles)
•  Core:

initialization function, interrupt handling, memory
virtualization

• Guest OS: (potentially malicious)
confined to Hypervisor provided interfaces above

•  Hyper-apps: (may not be trusted)
register interrupt handlers
confined to a set of interfaces core provides (different
from guest)

Approach
•  System abstraction: Model the system using

a programming language
• Types specify the trace properties
• Typing rules reason about compositions
• Adversaries are confined to the set of

interfaces (first-order)

•  Reasoning principles
• Local reasoning: ⊢ P : {ϕ} (in the presence of

adversaries)
• Adversary: ⊢ A : {ϕA} (given fixed set of interfaces)
• Compositional reasoning:

S1

S2

+ ϕ
ψ1

ψ2

⊢ P1 | … | Pn	
 |A :	
 {ϕ1∧…ϕn	
 ∧ϕA}	

Γ1 ⊢ P1 : {ϕ1}	
 Γn ⊢ Pn : {ϕn}	
 ⊢ A : {ϕA}	
 ⊢ Γ1	
 ⊢ Γn	
 …	
 …	

user	
 machine	

file	

system	
 network	

browser	

GDS	
 Downloaded	

Javascript	

