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Outline

• What is META?
• Project vision
• Tool environment
• Technologies

– System-level modeling and translation
– Complexity-reducing architectural patterns
– Compositional verification

• Next steps
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What is META?
• Devise, implement, and demonstrate a radically different approach to the design, 

integration/manufacturing, and verification of defense systems/vehicles

• Enhance designer’s ability to manage system complexity

• “Foundry-style” model of 
manufacturing

• Five technical areas

1. Metrics of complexity

2. Metrics of 
adaptability

3. Meta-language for 
system design

4. Design flow & tools

5. Verification flow & 
tools
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Vision
• Improve effectiveness and scalability of system design and 

verification through pre-verified design patterns and 
compositional reasoning
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Design FlowDesign Flow

Complexity-reducing design patterns
• Capture best solutions to architectural 

design problems
• Reuse of formally verified solutions
• Increase level of design abstraction

Complexity-reducing design patterns
• Capture best solutions to architectural 

design problems
• Reuse of formally verified solutions
• Increase level of design abstraction 2

Compositional verification
• Reason about system behavior 

based on contracts and system 
design model structure

• Compositional approach scales to 
large software systems

Compositional verification
• Reason about system behavior 

based on contracts and system 
design model structure

• Compositional approach scales to 
large software systems

3
System architecture modeling
• Apply formal specification and analysis 

tools to system-level design
• Separate component specification and 

implementation
• Automated model translation

System architecture modeling
• Apply formal specification and analysis 

tools to system-level design
• Separate component specification and 

implementation
• Automated model translation 1
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Tool chain

AADL

SysML-AADL 
translation

EDICT: 
Architectural 

patterns

Lute: 
Structural 
verification

AGREE: 
Compositional 

behavior verification

OSATE: 
AADL modeling

Enterprise 
Architect

Eclipse

KIND

SysML

Lustre



© Copyright 2012 Rockwell Collins, Inc. 
All rights reserved.

System architecture modeling

• We have been very successful at applying formal methods to 
software components produced in model-based development 
environments
– Gryphon translation framework
– Verification of Simulink/Stateflow models

• Objective
– Leverage this knowledge and

apply formal methods to the
system design process

• Issues
– Modeling language and tools
– Different models of computation
– Scalability

9

SCADE

Lustre

Safe State
Machines

Simulink Simulink
Gateway

StateFlow

Reactis

Simulink
Gateway

Design
Verifier

Rockwell Collins/U of Minnesota

MathWorks

SRI International

Reactive Systems

Esterel Technologies

Model Checkers:
NuSMV, Prover, 
BAT, Kind, SAL

Theorem Provers:
ACL2, PVS

Programming 
Languages:

SPARK (Ada), C
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System modeling and translation

• AADL is a good fit and provides sufficiently formal notation
– Available tools do not provide stable graphical environment
– OSATE:  open source, Eclipse-based

• SysML is being adopted by many organizations for system design
– But has no formal semantics 
– No common textual representation across tools

• Solution: Eclipse plugin that provides bidirectional translation
– Based on Enterprise Architect SysML tool used by Rockwell Collins
– Define block stereotypes that correspond to AADL objects

10
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Scale and composition
• Architectural model does not capture implementation details

– Component descriptions, interfaces, interconnections

• Assume/guarantee contracts provide the information needed 
from other modeling domains to reason about system-level 
properties
– Guarantees correspond to the component requirements
– Assumptions correspond to the environmental constraints that were 

used in proving the component requirements
– Contract specifies precisely the information that is needed to reason 

about the component’s interaction with other parts of the system
– Supports hierarchical decomposition of verification process

• Contract can be applied to both components and design 
patterns
– Mechanism for verification reuse
– More about this later
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• Design pattern = model transformation
– p : M  M (partial function)
– Applied to system models

• Reuse of verification is key
– Not software reuse
– Guaranteed behaviors associated with patterns 

(and components)
• Reduce/manage system complexity

– Separation of concerns
– System logic vs. application logic (e.g., fault tolerance)
– Process complexity vs. design complexity

• Encapsulate & standardize good solutions
– Raise level of abstraction
– Codify best practices

Complexity-Reducing 
Architectural Design Patterns

2
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• Provide virtual synchrony for parts of async system
• Assumptions

– Structural preconditions on system model (bounded 
jitter, computation, message delivery…)

– Required data connections exist
• Guarantees

– Sync logic executes with period T
– Data from step i consumed in step i +1

SYNCHRONOUS NETWORK ASYNCHRONOUS BOUNDED DELAY NETWORK WITH PALS

NODE 1

NODE 2

NODE 3

NODE 1

NODE 2

NODE 3
T CLOCK JITTER

i i + 1 i i + 1 Replication

share inputs merge outputs

• Create identical copies of portions of the system
• Assumptions

– Replicas hosted on platform HW with independent 
failure modes

• Guarantees
– One or replicas will operate normally in the event of 

a single fault

Leader Selection
• Create leader for group of 

nodes
• Assumptions

– Nodes communicate 
synchronously

– At least one non-
failed node

• Guarantees
– All non-failed nodes 

agree on leader
– If leader fails, new 

leader in next step
– Non-failed node 

remains leader

Voting/Fusion

PALS

• Combine several component interfaces
• Assumptions

– Interfaces terminate at same destination component
– Interfaces have same data type

• Guarantees
– Varies with component type
– Agreement, mid-value select, output select, average
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Initial Avionics System
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Final Avionics System (after pattern transformations)
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System verification 
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Instantiation:
Check structural constraints, 
Embed assumptions & 
guarantees in system model

Compositional Verification:  
System properties are verified 
by model checking using 
component & pattern 
contracts

Reusable Verification:
Proof of component and pattern 
requirements (guarantees) and 
specification of context 
(assumptions)

3
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Categories of system properties
• Structural/static

– Properties of the transformed model
– Pattern assumptions, post-conditions
– Specified and checked using Lute
– PALS period constraint

Deadline < PALS_Period - Max_Latency - 2*Clock_Jitter

• Behavioral/dynamic
– Pattern and component interactions
– Specified in PSL, verified by AGREE using model checking
– Failed node will not be leader in next step

G(!device_ok[j] -> X(leader[i] != j)) ; 

• Resource allocation
– RT schedulability, memory allocation, bandwidth allocation
– ASIIST tool (UIUC/RC)
– Threads can be scheduled to meet their deadlines

• Probabilistic
– Failure analysis of system
– Behavior and failure rates described using AADL error annex
– PRISM/PRISMATIC (SIFT/RC)
– P(all sensors failed) < 10-9
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Contracts between patterns and components

• Avionics system requirement

• Relies upon
– Guarantees provided by 

patterns and components
– Structural properties of 

model
– Resource allocation feasibility
– Probabilistic system-level 

failure characteristics
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Structural/static properties

• Software + HW platform
– Process, thread, processors, bus

• Ex: PALS vertical contract
– PALS timing constraints on 

platform
– Check AADL structural properties 

• Guarantees
– Sync logic executes at 

PALS_Period
– Synchronous_Communication

=> “One_Step_Delay”

• Assumptions (about platform)
– Causality constraint:

Min(Output time) ≥ 2ε – μmin

– PALS period constraint:
Max(Output time) ≤ T - μmax - 2ε

Software

Platform
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Structural property checks

• Contract
– Platform model satisfies 

PALS assumptions

• Attached at pattern 
instantiation
– Model-independent
– Assumptions
– Pre/post-conditions

• Lute theorems
– Based on REAL
– Eclipse plug-in
– Structural properties in 

AADL model

PALS_Threads := {s in Thread_Set | Property_Exists(s, 
"PALS_Properties::PALS_Id")};

PALS_Period(t) := Property(t, "PALS_Properties::PALS_Period");
PALS_Id(t) := Property(t, "PALS_Properties::PALS_Id");
PALS_Group(t) := {s in PALS_Threads | PALS_Id(t) = PALS_Id(s)};

Max_Thread_Jitter(Threads) :=
Max({Property(p, "Clock_Jitter") for p in Processor_Set |

Cardinal({t in Threads | Is_Bound_To(t, p)}) > 0});

Connections_Among(Set) :=
{c in Connection_Set | Member(Owner(Source(c)), Set) and

Member(Owner(Destination(c)), Set)};

theorem PALS_Period_is_Period
foreach s in PALS_Threads do
check Property_Exists(s, "Period") and

PALS_Period(s) = Property(s, "Period");
end;

theorem PALS_Causality
foreach s in PALS_Threads do
PALS_Group := PALS_Group(s);
Clock_Jitter := Max_Thread_Jitter(PALS_Group);
Min_Latency := Min({Lower(Property(c, "Latency")) for

c in Connections_Among(PALS_Group)});
Output_Delay := {Property(t, "Output_Delay") for t in PALS_Group};
check (if 2 * Clock_Jitter > Min_Latency then

Min(Output_Delay) > 2 * Clock_Jitter - Min_Latency
else
true);

end;
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Compositional behavior verification

• Given
– Assumptions for system 
– Assumptions/Guarantees for components (A, P)

• Prove
– System guarantees (requirements)

• New analysis plug-in (AGREE)
– Automatic translation of model structure, contracts, and verification 

conditions
– Verify via k-induction model checker (KIND - Tinelli @ Univ. of Iowa)

Example (to prove)
AS  AA
AS  PA  AB
AS  PA  PB  AC
AS  PA  PB  PC  PS

Contract compliance: 
G(H(A)  P) A

B

C
Assumption: Input < 20
Guarantee: Output < 2*Input

Assumption: Input < 20
Guarantee: Output < Input + 15

Assumption: none
Guarantee: Output = Input1 
+ Input2

Assumption: Input < 10
Guarantee: Output < 50
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Contract specification in AADL
• Derived from Property 

Specification Language 
(PSL) formalism
– IEEE standard 
– In wide use for 

hardware verification

• Assume / Guarantee 
style specification
– Assumptions: “Under 

these conditions”
– Guarantees: “…the 

system will do X”

• Local definitions can 
be created to simplify 
properties

• For now, this is an 
AADL string property

22

Contract: 

fun abs(x: real) : real = if (x > 0) then x else -x ; 

const ADS_MAX_PITCH_DELTA: real = 3.0 ;
const FCS_MAX_PITCH_SIDE_DELTA: real = 2.0 ;
const CSA_MAX_PITCH_DELTA: real = 5.0 ; 
const CSA_MAX_PITCH_DELTA_STEP: real = 5.0 ; 

property AD_L_Pitch_Step_Delta_Valid = 
true -> 
abs(AD_L.pitch.val - prev(AD_L.pitch.val, 0.0)) < ADS_MAX_PITCH_DELTA ;

property AD_R_Pitch_Step_Delta_Valid =
true -> 
abs(AD_R.pitch.val - prev(AD_R.pitch.val, 0.0)) < ADS_MAX_PITCH_DELTA ; 

property Pitch_lr_ok = 
abs(AD_L.pitch.val - AD_R.pitch.val) < FCS_MAX_PITCH_SIDE_DELTA ; 

property some_fgs_active = 
(FD_L.mds.active or FD_R.mds.active) ;

active_assumption: assume some_fgs_active ;

transient_assumption :
assume AD_L_Pitch_Step_Delta_Valid and

AD_R_Pitch_Step_Delta_Valid and Pitch_lr_ok ; 

transient_response_1 : 
assert true -> abs(CSA.CSA_Pitch_Delta) < CSA_MAX_PITCH_DELTA ;

transient_response_2 : 
assert true -> 

abs(CSA.CSA_Pitch_Delta - prev(CSA.CSA_Pitch_Delta, 0.0)) <  
CSA_MAX_PITCH_DELTA_STEP ;
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Compositional reasoning for FCS

23
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• Want to prove a transient response 
property

– The autopilot will not cause a sharp 
change in pitch of aircraft.

– Even when one FGS fails and the other 
assumes control

• Given assumptions about the 
environment

– The sensed aircraft pitch from the air 
data system is within some absolute 
bound and doesn’t change too quickly

– The discrepancy in sensed pitch 
between left and right side sensors is 
bounded.

• and guarantees provided by 
components

– When a FGS is active, it will generate 
an acceptable pitch rate

• As well as facts provided by pattern 
application

– Leader selection: at least one FGS will 
always be active (modulo one 
“failover” step)

transient_response_1 : assert true -> 
abs(CSA.CSA_Pitch_Delta) < CSA_MAX_PITCH_DELTA ;

transient_response_2 : assert true -> 
abs(CSA.CSA_Pitch_Delta - prev(CSA.CSA_Pitch_Delta, 0.0)) 

< CSA_MAX_PITCH_DELTA_STEP ;
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Compositional Reasoning and Patterns

• Guarantees provided by 
pattern are encoded as 
facts

• Attached at pattern 
instantiation 
– Model-independent
– Assumptions
– Pre/post-conditions

• Describe relationships 
between several 
components
– In this example, the 

Leader and Valid fields 
for the left and right 
FGSs.

24

pattern_instance Leader_Select_1 :

-- sync single-step delay between elements
assume single_step_delay_comm(FGS_L, FGS_R); 
assume single_step_delay_comm(FGS_R, FGS_L); 

-- All non-failed nodes agree on who is the leader
leader_agreement: 

assert (FGS_L.LSO.Valid and FGS_R.LSO.Valid) => 
FGS_L.LSO.Leader = FGS_R.LSO.Leader;

-- If a node fails, leadership is transferred to a non-failed node
leader_transfer_1: 
assert (prev(not(FGS_L.LSO.Valid), false) => 
(FGS_R.LSO.Valid => 
FGS_R.LSO.Leader != Get_Property(FGS_L, Leader_Select_ID)));

leader_transfer_2: 
assert prev(not(FGS_R.LSO.Valid), false) => 
(FGS_L.LSO.Valid => 

FGS_L.LSO.Leader != Get_Property(FGS_R, Leader_Select_ID));

-- If any non-failed nodes exist, one of them will be the leader
leader_existence: 
assert (prev(FGS_L.LSO.Valid or FGS_R.LSO.Valid, false)) =>
(( FGS_L.LSO.Valid => (FGS_L.LSO.Leader >= 1 and FGS_L.LSO.Leader <= 2)) and
( FGS_R.LSO.Valid => (FGS_R.LSO.Leader >= 1 and FGS_R.LSO.Leader <= 2)));

-- If the leader does not fail, it shall remain the leader.  
leader_persistence_1: assert
(prev(FGS_L.LSO.Valid and 
FGS_L.LSO.Leader = Get_Property(FGS_L, Leader_Select_ID), false)) =>
(FGS_L.LSO.Valid => 

FGS_L.LSO.Leader = Get_Property(FGS_L, Leader_Select_ID));

leader_persistence_2: assert
(prev(FGS_R.LSO.Valid and 
FGS_R.LSO.Leader = Get_Property(FGS_R, Leader_Select_ID), false)) =>
(FGS_R.LSO.Valid => 

FGS_R.LSO.Leader = Get_Property(FGS_R, Leader_Select_ID));      
end pattern_instance Leader_Select_1 ;
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Proof Process

• Order of data flow through 
system components is 
computed by AGREE
– {System inputs} 

{FGS_L, FGS_R}
– {FGS_L, FGS_R}  {AP}
– {AP}  {System outputs} 

• Based on flow, we establish 
four proof obligations
1. System assumptions 

FGS_L assumptions
2. System assumptions 

FGS_R assumptions
3. System assumptions + 

FGS_L guarantees + 
FGS_R guarantees 
AP assumptions

4. System assumptions + {FGS_L, FGS_R, AP} guarantees  System guarantees

• System can also handle circular flows, but user has to choose where to 
break cycle (usually a time delay)
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Verification tools
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LuteLute
AGREEAGREE

CounterexampleCounterexample
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Next steps

• Extend compositional verification to more complex models of 
computation
– Multiple rates, delays, asynchrony

• Incorporate additional design patterns in library
– Especially fault tolerance patterns with existing verification artifacts

• Improved annotation of contracts in architecture models
– AADL annex? Alternate representations (e.g., sequence diagrams?)

• More general mechanism for composing evidence from multiple 
sources
– Evidence graph, assurance case
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Download
• AADL Tools wiki

– https://wiki.sei.cmu.edu/aadl/index.php/RC_META
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