
© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Compositional Verification of
Architectural Models

High Confidence Software & Systems Conference

9 May 2012
Darren Cofer

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

2

Outline

• What is META?
• Project vision
• Tool environment
• Technologies

– System-level modeling and translation
– Complexity-reducing architectural patterns
– Compositional verification

• Next steps

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

3

Team

• Rockwell Collins / Advanced Technology Center
– Darren Cofer, Steven Miller, Andrew Gacek
– System modeling & analysis, tooling, integration

• UIUC
– Lui Sha
– Design pattern development

• University of MN
– Michael Whalen
– Pattern verification, compositional analysis

• WWTG
– Chris Walter, Brian LaValley
– Pattern implementation & analysis tools

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

5

What is META?
• Devise, implement, and demonstrate a radically different approach to the design,

integration/manufacturing, and verification of defense systems/vehicles

• Enhance designer’s ability to manage system complexity

• “Foundry-style” model of
manufacturing

• Five technical areas

1. Metrics of complexity

2. Metrics of
adaptability

3. Meta-language for
system design

4. Design flow & tools

5. Verification flow &
tools

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

6

Vision
• Improve effectiveness and scalability of system design and

verification through pre-verified design patterns and
compositional reasoning

COMPUTING
RESOURCESENSOR

LRU

FAIL-SILENT
NODE FROM

REPLICAS

COMPUTING
RESOURCE A

COMPUTING
RESOURCE B

VOTE
MULTIPLE

DATA

SENSOR 1

SENSOR 2

SENSOR 3

VERIFIED
AVAILABILITY

VERIFIED
INTEGRITYARCHITECTURE

MODEL

COMPOSITIONAL PROOF OF CORRECTNESS
(ASSUME – GUARANTEE)

SAFETY, BEHAVIORAL,
PERFORMANCE PROPERTIES

A
B

STR
A

C
TIO

N
VER

IFIC
ATIO

N
R

EU
SE

COMPOSITION

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

PATTERN &
COMP SPEC

LIBRARY

SYSTEM
MODELING

ENVIRONMENT

INSTANTIATE
ARCH PATTERNS

& CHECK
CONSTRAINTS

COMPOSITIONAL
REASONING &

ANALYSIS

SYSTEM
MODEL
(AADL)

AUTO
GENERATE

SYSTEM
IMPLEMENTATION

ARCH
PATTERN
MODELS

COMPONENT
MODELS

ANNOTATE
& VERIFY
MODELS

COMPONENT
LIBRARY

SPECIFICATION SYSTEM DEVELOPMENT FOUNDRY

Approach

7

Design FlowDesign Flow

Complexity-reducing design patterns
• Capture best solutions to architectural

design problems
• Reuse of formally verified solutions
• Increase level of design abstraction

Complexity-reducing design patterns
• Capture best solutions to architectural

design problems
• Reuse of formally verified solutions
• Increase level of design abstraction 2

Compositional verification
• Reason about system behavior

based on contracts and system
design model structure

• Compositional approach scales to
large software systems

Compositional verification
• Reason about system behavior

based on contracts and system
design model structure

• Compositional approach scales to
large software systems

3
System architecture modeling
• Apply formal specification and analysis

tools to system-level design
• Separate component specification and

implementation
• Automated model translation

System architecture modeling
• Apply formal specification and analysis

tools to system-level design
• Separate component specification and

implementation
• Automated model translation 1

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

8

Tool chain

AADL

SysML-AADL
translation

EDICT:
Architectural

patterns

Lute:
Structural
verification

AGREE:
Compositional

behavior verification

OSATE:
AADL modeling

Enterprise
Architect

Eclipse

KIND

SysML

Lustre

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

System architecture modeling

• We have been very successful at applying formal methods to
software components produced in model-based development
environments
– Gryphon translation framework
– Verification of Simulink/Stateflow models

• Objective
– Leverage this knowledge and

apply formal methods to the
system design process

• Issues
– Modeling language and tools
– Different models of computation
– Scalability

9

SCADE

Lustre

Safe State
Machines

Simulink Simulink
Gateway

StateFlow

Reactis

Simulink
Gateway

Design
Verifier

Rockwell Collins/U of Minnesota

MathWorks

SRI International

Reactive Systems

Esterel Technologies

Model Checkers:
NuSMV, Prover,
BAT, Kind, SAL

Theorem Provers:
ACL2, PVS

Programming
Languages:

SPARK (Ada), C

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

System modeling and translation

• AADL is a good fit and provides sufficiently formal notation
– Available tools do not provide stable graphical environment
– OSATE: open source, Eclipse-based

• SysML is being adopted by many organizations for system design
– But has no formal semantics
– No common textual representation across tools

• Solution: Eclipse plugin that provides bidirectional translation
– Based on Enterprise Architect SysML tool used by Rockwell Collins
– Define block stereotypes that correspond to AADL objects

10

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Scale and composition
• Architectural model does not capture implementation details

– Component descriptions, interfaces, interconnections

• Assume/guarantee contracts provide the information needed
from other modeling domains to reason about system-level
properties
– Guarantees correspond to the component requirements
– Assumptions correspond to the environmental constraints that were

used in proving the component requirements
– Contract specifies precisely the information that is needed to reason

about the component’s interaction with other parts of the system
– Supports hierarchical decomposition of verification process

• Contract can be applied to both components and design
patterns
– Mechanism for verification reuse
– More about this later

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

12

• Design pattern = model transformation
– p : M M (partial function)
– Applied to system models

• Reuse of verification is key
– Not software reuse
– Guaranteed behaviors associated with patterns

(and components)
• Reduce/manage system complexity

– Separation of concerns
– System logic vs. application logic (e.g., fault tolerance)
– Process complexity vs. design complexity

• Encapsulate & standardize good solutions
– Raise level of abstraction
– Codify best practices

Complexity-Reducing
Architectural Design Patterns

2

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

• Provide virtual synchrony for parts of async system
• Assumptions

– Structural preconditions on system model (bounded
jitter, computation, message delivery…)

– Required data connections exist
• Guarantees

– Sync logic executes with period T
– Data from step i consumed in step i +1

SYNCHRONOUS NETWORK ASYNCHRONOUS BOUNDED DELAY NETWORK WITH PALS

NODE 1

NODE 2

NODE 3

NODE 1

NODE 2

NODE 3
T CLOCK JITTER

i i + 1 i i + 1 Replication

share inputs merge outputs

• Create identical copies of portions of the system
• Assumptions

– Replicas hosted on platform HW with independent
failure modes

• Guarantees
– One or replicas will operate normally in the event of

a single fault

Leader Selection
• Create leader for group of

nodes
• Assumptions

– Nodes communicate
synchronously

– At least one non-
failed node

• Guarantees
– All non-failed nodes

agree on leader
– If leader fails, new

leader in next step
– Non-failed node

remains leader

Voting/Fusion

PALS

• Combine several component interfaces
• Assumptions

– Interfaces terminate at same destination component
– Interfaces have same data type

• Guarantees
– Varies with component type
– Agreement, mid-value select, output select, average

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

1414

Initial Avionics System

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

1515

Final Avionics System (after pattern transformations)

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

16

System verification

PATTERN &
COMP SPEC

LIBRARY

SYSTEM
MODELING

ENVIRONMENT

INSTANTIATE
ARCHITECTURAL

PATTERNS

SYSTEM
MODEL

AUTO
GENERATE

SYSTEM
IMPLEMENTATION

ARCH
PATTERN
MODELS

COMPONENT
MODELS

ANNOTATE
& VERIFY
MODELS

COMPONENT
LIBRARY

SPECIFICATION SYSTEM DEVELOPMENT FOUNDRY

COMPOSITIONAL
REASONING &

ANALYSIS

Instantiation:
Check structural constraints,
Embed assumptions &
guarantees in system model

Compositional Verification:
System properties are verified
by model checking using
component & pattern
contracts

Reusable Verification:
Proof of component and pattern
requirements (guarantees) and
specification of context
(assumptions)

3

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

17

Categories of system properties
• Structural/static

– Properties of the transformed model
– Pattern assumptions, post-conditions
– Specified and checked using Lute
– PALS period constraint

Deadline < PALS_Period - Max_Latency - 2*Clock_Jitter

• Behavioral/dynamic
– Pattern and component interactions
– Specified in PSL, verified by AGREE using model checking
– Failed node will not be leader in next step

G(!device_ok[j] -> X(leader[i] != j)) ;

• Resource allocation
– RT schedulability, memory allocation, bandwidth allocation
– ASIIST tool (UIUC/RC)
– Threads can be scheduled to meet their deadlines

• Probabilistic
– Failure analysis of system
– Behavior and failure rates described using AADL error annex
– PRISM/PRISMATIC (SIFT/RC)
– P(all sensors failed) < 10-9

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

18

Contracts between patterns and components

• Avionics system requirement

• Relies upon
– Guarantees provided by

patterns and components
– Structural properties of

model
– Resource allocation feasibility
– Probabilistic system-level

failure characteristics

LS

PALS Rep

Platform

synchronous
communication

one node
operational

timing
constraints

not
co-located

Avionics
System

leader transition
bounded

A
SS

U
M

PT
IO

N
S

G
U

A
R

A
N

TE
ES

Under single-fault assumption, GC
output transient response is bounded
in time and magnitude

RT sched
& latency

Error
model

Behavior

Structure

Resource Probabilistic

Principled mechanism for
“passing the buck”

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

19

Structural/static properties

• Software + HW platform
– Process, thread, processors, bus

• Ex: PALS vertical contract
– PALS timing constraints on

platform
– Check AADL structural properties

• Guarantees
– Sync logic executes at

PALS_Period
– Synchronous_Communication

=> “One_Step_Delay”

• Assumptions (about platform)
– Causality constraint:

Min(Output time) ≥ 2ε – μmin

– PALS period constraint:
Max(Output time) ≤ T - μmax - 2ε

Software

Platform

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

20

Structural property checks

• Contract
– Platform model satisfies

PALS assumptions

• Attached at pattern
instantiation
– Model-independent
– Assumptions
– Pre/post-conditions

• Lute theorems
– Based on REAL
– Eclipse plug-in
– Structural properties in

AADL model

PALS_Threads := {s in Thread_Set | Property_Exists(s,
"PALS_Properties::PALS_Id")};

PALS_Period(t) := Property(t, "PALS_Properties::PALS_Period");
PALS_Id(t) := Property(t, "PALS_Properties::PALS_Id");
PALS_Group(t) := {s in PALS_Threads | PALS_Id(t) = PALS_Id(s)};

Max_Thread_Jitter(Threads) :=
Max({Property(p, "Clock_Jitter") for p in Processor_Set |

Cardinal({t in Threads | Is_Bound_To(t, p)}) > 0});

Connections_Among(Set) :=
{c in Connection_Set | Member(Owner(Source(c)), Set) and

Member(Owner(Destination(c)), Set)};

theorem PALS_Period_is_Period
foreach s in PALS_Threads do
check Property_Exists(s, "Period") and

PALS_Period(s) = Property(s, "Period");
end;

theorem PALS_Causality
foreach s in PALS_Threads do
PALS_Group := PALS_Group(s);
Clock_Jitter := Max_Thread_Jitter(PALS_Group);
Min_Latency := Min({Lower(Property(c, "Latency")) for

c in Connections_Among(PALS_Group)});
Output_Delay := {Property(t, "Output_Delay") for t in PALS_Group};
check (if 2 * Clock_Jitter > Min_Latency then

Min(Output_Delay) > 2 * Clock_Jitter - Min_Latency
else
true);

end;

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

21

Compositional behavior verification

• Given
– Assumptions for system
– Assumptions/Guarantees for components (A, P)

• Prove
– System guarantees (requirements)

• New analysis plug-in (AGREE)
– Automatic translation of model structure, contracts, and verification

conditions
– Verify via k-induction model checker (KIND - Tinelli @ Univ. of Iowa)

Example (to prove)
AS AA
AS PA AB
AS PA PB AC
AS PA PB PC PS

Contract compliance:
G(H(A) P) A

B

C
Assumption: Input < 20
Guarantee: Output < 2*Input

Assumption: Input < 20
Guarantee: Output < Input + 15

Assumption: none
Guarantee: Output = Input1
+ Input2

Assumption: Input < 10
Guarantee: Output < 50

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

22

Contract specification in AADL
• Derived from Property

Specification Language
(PSL) formalism
– IEEE standard
– In wide use for

hardware verification

• Assume / Guarantee
style specification
– Assumptions: “Under

these conditions”
– Guarantees: “…the

system will do X”

• Local definitions can
be created to simplify
properties

• For now, this is an
AADL string property

22

Contract:

fun abs(x: real) : real = if (x > 0) then x else -x ;

const ADS_MAX_PITCH_DELTA: real = 3.0 ;
const FCS_MAX_PITCH_SIDE_DELTA: real = 2.0 ;
const CSA_MAX_PITCH_DELTA: real = 5.0 ;
const CSA_MAX_PITCH_DELTA_STEP: real = 5.0 ;

property AD_L_Pitch_Step_Delta_Valid =
true ->
abs(AD_L.pitch.val - prev(AD_L.pitch.val, 0.0)) < ADS_MAX_PITCH_DELTA ;

property AD_R_Pitch_Step_Delta_Valid =
true ->
abs(AD_R.pitch.val - prev(AD_R.pitch.val, 0.0)) < ADS_MAX_PITCH_DELTA ;

property Pitch_lr_ok =
abs(AD_L.pitch.val - AD_R.pitch.val) < FCS_MAX_PITCH_SIDE_DELTA ;

property some_fgs_active =
(FD_L.mds.active or FD_R.mds.active) ;

active_assumption: assume some_fgs_active ;

transient_assumption :
assume AD_L_Pitch_Step_Delta_Valid and

AD_R_Pitch_Step_Delta_Valid and Pitch_lr_ok ;

transient_response_1 :
assert true -> abs(CSA.CSA_Pitch_Delta) < CSA_MAX_PITCH_DELTA ;

transient_response_2 :
assert true ->

abs(CSA.CSA_Pitch_Delta - prev(CSA.CSA_Pitch_Delta, 0.0)) <
CSA_MAX_PITCH_DELTA_STEP ;

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

23

Compositional reasoning for FCS

23

ibd [SysML Internal Block] Flight_Control_System_Impl [Flight_Control_System]

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM_L
FM_R

NAV_L
NAV_R

THROT_L THROT_RYOKE_L YOKE_R

Flight_Control_System

Flight_Control_System_Impl

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM_L
FM_R

NAV_L
NAV_R

THROT_L THROT_RYOKE_L YOKE_R

THROT_L
THROT_R

YOKE_L YOKE_R

FCI

FCI : Flight_Crew_Interface

THROT_L
THROT_R

YOKE_L YOKE_R

FCI

GC_L GC_R

CSA

AP : Autopilot_System

GC_L GC_R

CSA

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGS_L : Flight_Guidance_System

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD
AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGS_R : Flight_Guidance_System

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGSRtoAP

YOKER2FCIYOKEL2FCI

THROTL2FCI

AP2CSA

NAVLtoFGSL

FMLtoFGSL

AHLtoFGSL

ADLtoFGSL

THROTR2FCI

FGSLtoAP

FGSLtoFGSR

FGSRtoFDR

ADRtoFGSR

AHRtoFGSR

FMRtoFGSR

NAVRtoFGSR

FCItoFGSL

FGSRtoFGSL

FCItoFGSR

FGSLtoFDL

• Want to prove a transient response
property

– The autopilot will not cause a sharp
change in pitch of aircraft.

– Even when one FGS fails and the other
assumes control

• Given assumptions about the
environment

– The sensed aircraft pitch from the air
data system is within some absolute
bound and doesn’t change too quickly

– The discrepancy in sensed pitch
between left and right side sensors is
bounded.

• and guarantees provided by
components

– When a FGS is active, it will generate
an acceptable pitch rate

• As well as facts provided by pattern
application

– Leader selection: at least one FGS will
always be active (modulo one
“failover” step)

transient_response_1 : assert true ->
abs(CSA.CSA_Pitch_Delta) < CSA_MAX_PITCH_DELTA ;

transient_response_2 : assert true ->
abs(CSA.CSA_Pitch_Delta - prev(CSA.CSA_Pitch_Delta, 0.0))

< CSA_MAX_PITCH_DELTA_STEP ;

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

24

Compositional Reasoning and Patterns

• Guarantees provided by
pattern are encoded as
facts

• Attached at pattern
instantiation
– Model-independent
– Assumptions
– Pre/post-conditions

• Describe relationships
between several
components
– In this example, the

Leader and Valid fields
for the left and right
FGSs.

24

pattern_instance Leader_Select_1 :

-- sync single-step delay between elements
assume single_step_delay_comm(FGS_L, FGS_R);
assume single_step_delay_comm(FGS_R, FGS_L);

-- All non-failed nodes agree on who is the leader
leader_agreement:

assert (FGS_L.LSO.Valid and FGS_R.LSO.Valid) =>
FGS_L.LSO.Leader = FGS_R.LSO.Leader;

-- If a node fails, leadership is transferred to a non-failed node
leader_transfer_1:
assert (prev(not(FGS_L.LSO.Valid), false) =>
(FGS_R.LSO.Valid =>
FGS_R.LSO.Leader != Get_Property(FGS_L, Leader_Select_ID)));

leader_transfer_2:
assert prev(not(FGS_R.LSO.Valid), false) =>
(FGS_L.LSO.Valid =>

FGS_L.LSO.Leader != Get_Property(FGS_R, Leader_Select_ID));

-- If any non-failed nodes exist, one of them will be the leader
leader_existence:
assert (prev(FGS_L.LSO.Valid or FGS_R.LSO.Valid, false)) =>
((FGS_L.LSO.Valid => (FGS_L.LSO.Leader >= 1 and FGS_L.LSO.Leader <= 2)) and
(FGS_R.LSO.Valid => (FGS_R.LSO.Leader >= 1 and FGS_R.LSO.Leader <= 2)));

-- If the leader does not fail, it shall remain the leader.
leader_persistence_1: assert
(prev(FGS_L.LSO.Valid and
FGS_L.LSO.Leader = Get_Property(FGS_L, Leader_Select_ID), false)) =>
(FGS_L.LSO.Valid =>

FGS_L.LSO.Leader = Get_Property(FGS_L, Leader_Select_ID));

leader_persistence_2: assert
(prev(FGS_R.LSO.Valid and
FGS_R.LSO.Leader = Get_Property(FGS_R, Leader_Select_ID), false)) =>
(FGS_R.LSO.Valid =>

FGS_R.LSO.Leader = Get_Property(FGS_R, Leader_Select_ID));
end pattern_instance Leader_Select_1 ;

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

25

Proof Process

• Order of data flow through
system components is
computed by AGREE
– {System inputs}

{FGS_L, FGS_R}
– {FGS_L, FGS_R} {AP}
– {AP} {System outputs}

• Based on flow, we establish
four proof obligations
1. System assumptions

FGS_L assumptions
2. System assumptions

FGS_R assumptions
3. System assumptions +

FGS_L guarantees +
FGS_R guarantees
AP assumptions

4. System assumptions + {FGS_L, FGS_R, AP} guarantees System guarantees

• System can also handle circular flows, but user has to choose where to
break cycle (usually a time delay)

ibd [SysML Internal Block] Flight_Control_System_Impl [Flight_Control_System]

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM_L
FM_R

NAV_L
NAV_R

THROT_L THROT_RYOKE_L YOKE_R

Flight_Control_System

Flight_Control_System_Impl

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM_L
FM_R

NAV_L
NAV_R

THROT_L THROT_RYOKE_L YOKE_R

THROT_L
THROT_R

YOKE_L YOKE_R

FCI

FCI : Flight_Crew_Interface

THROT_L
THROT_R

YOKE_L YOKE_R

FCI

GC_L GC_R

CSA

AP : Autopilot_System

GC_L GC_R

CSA

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGS_L : Flight_Guidance_System

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD
AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGS_R : Flight_Guidance_System

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGSRtoAP

YOKER2FCIYOKEL2FCI

THROTL2FCI

AP2CSA

NAVLtoFGSL

FMLtoFGSL

AHLtoFGSL

ADLtoFGSL

THROTR2FCI

FGSLtoAP

FGSLtoFGSR

FGSRtoFDR

ADRtoFGSR

AHRtoFGSR

FMRtoFGSR

NAVRtoFGSR

FCItoFGSL

FGSRtoFGSL

FCItoFGSR

FGSLtoFDL

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Verification tools

26

LuteLute
AGREEAGREE

CounterexampleCounterexample

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

27

Next steps

• Extend compositional verification to more complex models of
computation
– Multiple rates, delays, asynchrony

• Incorporate additional design patterns in library
– Especially fault tolerance patterns with existing verification artifacts

• Improved annotation of contracts in architecture models
– AADL annex? Alternate representations (e.g., sequence diagrams?)

• More general mechanism for composing evidence from multiple
sources
– Evidence graph, assurance case

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Download
• AADL Tools wiki

– https://wiki.sei.cmu.edu/aadl/index.php/RC_META

28

