
 Compositional verification of modular
C programs using VST and VSU

Lennart Beringer

May 3-6 2021

Awards 1005849 Verified High Performance Data Structure Implementations (Beringer)
and 1521602 Expedition in Computing: The Science of Deep Specification (Appel).

21st High Confidence Software and
Systems Conference (HCSS’21)

2

 Verified Software Toolchain (VST)

Practical and foundational

verification for C using

 separation logic

O’Hearn Reynolds

 Leroy

 Floyd Hoare

Realizing the vision of

using the insights of

based on foundations by

3

 Verified Software Toolchain (VST)

Practical and foundational

verification for C using

 separation logic

O’Hearn Reynolds

 Leroy

 Floyd Hoare

Realizing the vision of

using the insights of

based on foundations by

Stand-alone: crypto primitives,
garbage collector, hashtables,
malloc/free, mailbox communication, FEC, ...

Connected: webserver, interaction
trees, socket interface (CertiKOS)...

HACMS

4

 Hierarchy of formal systems

{P} c {Q}

Functional model

Cryptographic security,
reliable packet delivery, ...

typedef struct cell * pCell;
struct cell {
 struct methods *mtable;
 int data;
};
int cell_get (object self) { … }

Integrate model-level-reasoning,
code-level specification, verification, and
compilation in a single formal environment

Benefit #1: no gaps at tool / model boundaries

Benefit #2 (“connect up): crypto,
 model of network interaction

Benefit #3 (“connect down”):
 OS interface (eg socket), HW

Verified Software Units5

Software is complex . . .

+ libraries, middleware, applications,...

Verified Software Units6

Well-organized software is modular

Modular software admits modular
specification and verification.

Operating system + libraries ...

Module1.c

Module1.h

socket.h

Parnas

Liskov

 Meyer

Module2.c

Module2.h

Module3.c

Module3.h

Module4.c

Module4.h

main.c

 Mitchell

 Plotkin

 Burstall

 Goguen

(and
many
more...)

Verified Software Units7

Well-organized software is modular

Modular software admits modular
specification and verification.

Even in C ?

Operating system + libraries ...

Module1.c

Module1.h

socket.h

Parnas

Liskov

 Meyer

Module2.c

Module2.h

Module3.c

Module3.h

Module4.c

Module4.h

main.c

 Mitchell

 Plotkin

 Burstall

 Goguen

(and
many
more...)

Verified Software Units8

From VST to VSU

Theory and implementation of Verified Software Units (VSUs):

● VST-verified compilation units for CompCert Clight

● composable at API-level specification interfaces

● compatible with syntactic composition of Clight AST’s

● provably sound w.r.t. VST’s whole-program guarantee

Verified Software Units9

From VST to VSU

Key idea: realize concepts from type theory/functional programming
in imperative setting of C and exploit Coq’s meta-logic
● subtyping → function specification subsumption (adaptation of specifications at module boundaries)

● intersection types → intersection specifications (permit multiple specs, at different abstraction levels)

● existential (type) abstraction → information-hiding representation predicates

● parametricity → uniformity of specifications, strictest possible control over information leakage

Theory and implementation of Verified Software Units (VSUs):

● VST-verified compilation units for CompCert Clight

● composable at API-level specification interfaces

● compatible with syntactic composition of Clight AST’s (“linking”)

● provably sound w.r.t. VST’s whole-program guarantee

Case studies with dataless programming (ADTs, simple objects).

Verified Software Units10

Example: stack ADT

// Include statements ...
// Shared constants, macros ...

struct stack;

struct stack *newstack(void);

void push (struct stack *p, int i);

int pop (struct stack *p);

shared data type declarations
 - heap- or stack-allocated
 - representation-hiding

function prototypes

Stack.h

// Include statements …
// Private constants, macros …
// Private data structures (“list”) and auxiliary functions ...

struct stack { struct list *top; };

struct stack *newstack(void) { … }

void push (struct stack *p, int i) { … }

int pop (struct stack *p) { … }

Stack.c

data type
definition
(representation)

function definitions
(implementation)

Verified Software Units11

Example: stack ADT

// Include statements ...
// Shared constants, macros ...

struct stack;

struct stack *newstack(void);

void push (struct stack *p, int i);

int pop (struct stack *p);

shared data type declarations
 - heap- or stack-allocated
 - representation-hiding

function prototypes

Stack.h

// Include statements …
// Private constants, macros …
// Private data structures and auxiliary functions ...

struct stack { struct list *top; };

struct stack *newstack(void) { … }

void push (struct stack *p, int i) { … }

int pop (struct stack *p) { … }

Stack.c

data type
definition
(representation)

function definitions
(implementation)

Existentially quantified representation-
independent abstract predicates + axioms

Abstract predicate declarations (APD)

Abstract specification interface (ASI)
Representation-independent VST specifications of

API-exposed functions, parametric in APDs

Verified software unit (VSU)
Representation-dependent substantiation of an ASI
● parametric in APDs of predicates provided by other modules
● provides axiom-validating instantiations of APDs for

predicates provided by this module (using concrete predicates)
● VST proofs of ASI-exported and private functions

Verified Software Units12

Example: stack ADT

// Include statements ...
// Shared constants, macros ...

struct stack;

struct stack *newstack(void);

void push (struct stack *p, int i);

int pop (struct stack *p);

shared data type declarations
 - heap- or stack-allocated
 - representation-hiding

function prototypes

Stack.h

// Include statements …
// Private constants, macros …
// Private data structures and auxiliary functions ...

struct stack { struct list *top; };

struct stack *newstack(void) { … }

void push (struct stack *p, int i) { … }

int pop (struct stack *p) { … }

Stack.c

data type
definition
(representation)

function definitions
(implementation)

Existentially quantified representation-
independent abstract predicates + axioms

Abstract predicate declarations (APD)

Abstract specification interface (ASI)
Representation-independent VST specifications of

API-exposed functions, parametric in APDs

Verified software unit (VSU)
Representation-dependent substantiation of an ASI
● parametric in APDs of predicates provided by other modules
● provides axiom-validating instantiations of APDs for

predicates provided by this module (using concrete predicates)
● VST proofs of ASI-exported and private functions

VSU_link retains abstraction and ensures whole-program soundness wrt VST

Verified Software Units13

typedef struct point *Point;

struct methods {
 int (*get) (Point);
 void (*set) (Point, int);
};

typedef struct methods * Methods;

struct point {
 Methods mtable;
};

Point.h

Simple objects in C

Dynamic dispatch using function pointers and struct extensions

Subtypes: additional
methods go here

Representation hiding:
all data goes here

One API, many coexisting implementations, distinguished only by API-exposed constructors.

#include “Point.h”
Point makePoint_I2 (int);

Point_I2.h

#include “Point_I2.h”
struct point_I2 {
 Methods mtable;
 bool intmin;
 int negvalue;
};

int get_I2 (Point p) { … }
void set_I2 (Point p, int i) { … }

Point makePoint_I2 (int i) { … }

Point_I2.h

#include “Point.h”
Point makePoint_I1 (int);

Point_I1.h

#include “Point_I1.h”
struct point_I1 {
 Methods mtable;
 int value;
};

int get_I1 (Point p) { ...}
void set_I1 (Point p, int i) { … }

Point makePoint_I1 (int i) { … }

Point_I1.h

Interface

Implementation 1 Implementation 2

Clients import constructor-API
of choice

Specification and verification based on semantic objects and positive subtyping.

Verified Software Units14

● Enhanced capabilities for modular foundational verification of C code using VST

● Enforce SW engineering principles using SL + type theory + proof assistant

● Performance improvements due to lightweight representation of Clight programs

● Current & future work:

● additional reasoning principles for objects, CertiCoq-FFI

● applications with concurrency (fine-grained locking, lockfree, …)

● OPS-5G: SDN control plane verification and interaction with

● Paper at ESOP’21, stack example in next release of Software Foundations, Volume 5

Conclusion

Visit https://github.com/coq/platform for installer

or https://vst.cs.princeton.edu to access git master.

Questions? See VST mailing list, stackoverflow

https://vst.cs.princeton.edu/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

