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using the insights of

based on foundations by

Stand-alone: crypto primitives,
garbage collector, hashtables,
malloc/free, mailbox communication, FEC, ...

Connected: webserver, interaction 
trees, socket interface (CertiKOS)...

HACMS
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         Hierarchy of formal systems

{P} c {Q}

Functional model

Cryptographic security,
reliable packet delivery, ...

typedef struct cell * pCell;
struct cell {
  struct methods *mtable;
  int data;
};
int cell_get (object self) {  … }

Integrate model-level-reasoning,
code-level specification, verification, and
compilation in a single formal environment

Benefit #1: no gaps at tool / model boundaries

Benefit #2 (“connect up): crypto,
               model of network interaction

Benefit #3 (“connect down”): 
               OS interface (eg socket), HW
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Software is complex . . .

+ libraries, middleware, applications,...
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Well-organized software is modular

Modular software admits modular
specification and verification.

Operating system + libraries ...

Module1.c

Module1.h

socket.h

Parnas

Liskov

  Meyer

Module2.c

Module2.h

Module3.c

Module3.h

Module4.c

Module4.h

main.c

    Mitchell

    Plotkin

    Burstall

    Goguen

(and 
many 
more...)
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Well-organized software is modular

Modular software admits modular
specification and verification.

Even in C ?

Operating system + libraries ...

Module1.c

Module1.h

socket.h

Parnas

Liskov

  Meyer
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From VST to VSU

Theory and implementation of Verified Software Units (VSUs):

● VST-verified compilation units for CompCert Clight

● composable at API-level specification interfaces

● compatible with syntactic composition of Clight AST’s

● provably sound w.r.t. VST’s whole-program guarantee
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From VST to VSU

Key idea: realize concepts from type theory/functional programming 
in imperative setting of C and exploit Coq’s meta-logic 
● subtyping → function specification subsumption (adaptation of specifications at module boundaries) 

● intersection types → intersection specifications (permit multiple specs, at different abstraction levels)

● existential (type) abstraction → information-hiding representation predicates

● parametricity → uniformity of specifications, strictest possible control over information leakage

Theory and implementation of Verified Software Units (VSUs):

● VST-verified compilation units for CompCert Clight

● composable at API-level specification interfaces

● compatible with syntactic composition of Clight AST’s (“linking”)

● provably sound w.r.t. VST’s whole-program guarantee

Case studies with dataless programming (ADTs, simple objects).
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Example: stack ADT

// Include statements ...
// Shared constants, macros ...

struct stack;

struct stack *newstack(void);

void push (struct stack *p, int i);

int pop (struct stack *p);

shared data type declarations
  - heap- or stack-allocated
  - representation-hiding

function prototypes

Stack.h

// Include statements … 
// Private constants, macros …
// Private data structures (“list”) and auxiliary functions ...

struct stack { struct list *top; };

struct stack *newstack(void) { … }

void push (struct stack *p, int i) { … }

int pop (struct stack *p) { … }

Stack.c

data type
definition
(representation)

function definitions 
(implementation)
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Example: stack ADT

// Include statements ...
// Shared constants, macros ...

struct stack;
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void push (struct stack *p, int i);
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  - heap- or stack-allocated
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function prototypes

Stack.h

// Include statements … 
// Private constants, macros …
// Private data structures and auxiliary functions ...
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struct stack *newstack(void) { … }

void push (struct stack *p, int i) { … }

int pop (struct stack *p) { … }

Stack.c

data type
definition
(representation)

function definitions 
(implementation)

Existentially quantified representation-
independent abstract predicates + axioms

Abstract predicate declarations (APD)

Abstract specification interface (ASI)
Representation-independent VST specifications of

API-exposed functions, parametric in APDs

Verified software unit (VSU)
Representation-dependent substantiation of an ASI
● parametric in APDs of predicates provided by other modules
● provides axiom-validating instantiations of APDs for

predicates provided by this module (using concrete predicates)
● VST proofs of ASI-exported and private functions
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Example: stack ADT

// Include statements ...
// Shared constants, macros ...

struct stack;

struct stack *newstack(void);

void push (struct stack *p, int i);

int pop (struct stack *p);

shared data type declarations
  - heap- or stack-allocated
  - representation-hiding

function prototypes

Stack.h

// Include statements … 
// Private constants, macros …
// Private data structures and auxiliary functions ...

struct stack { struct list *top; };

struct stack *newstack(void) { … }

void push (struct stack *p, int i) { … }

int pop (struct stack *p) { … }

Stack.c

data type
definition
(representation)

function definitions 
(implementation)

Existentially quantified representation-
independent abstract predicates + axioms

Abstract predicate declarations (APD)

Abstract specification interface (ASI)
Representation-independent VST specifications of

API-exposed functions, parametric in APDs

Verified software unit (VSU)
Representation-dependent substantiation of an ASI
● parametric in APDs of predicates provided by other modules
● provides axiom-validating instantiations of APDs for

predicates provided by this module (using concrete predicates)
● VST proofs of ASI-exported and private functions

VSU_link retains abstraction and ensures whole-program soundness wrt VST
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typedef struct point *Point;

struct methods {
  int (*get) (Point);
  void (*set) (Point, int);
};

typedef struct methods * Methods;

struct point {
  Methods mtable;
};

Point.h

Simple objects in C

Dynamic dispatch using function pointers and struct extensions

Subtypes: additional
methods go here

Representation hiding: 
all data goes here

One API, many coexisting implementations, distinguished only by API-exposed constructors.

#include “Point.h”
Point makePoint_I2 (int);

Point_I2.h

#include “Point_I2.h”
struct point_I2 { 
  Methods mtable;
  bool intmin; 
  int negvalue;
};

int get_I2 (Point p) { … }
void set_I2 (Point p, int i) { … }

Point makePoint_I2 (int i) { … }

Point_I2.h

#include “Point.h”
Point makePoint_I1 (int);

Point_I1.h

#include “Point_I1.h”
struct point_I1 {
  Methods mtable;
  int value;
};

int get_I1 (Point p) { ...}
void set_I1 (Point p, int i) { … }

Point makePoint_I1 (int i) { … }

Point_I1.h

Interface

Implementation 1 Implementation 2

Clients import constructor-API 
of choice

Specification and verification based on semantic objects and positive subtyping.



Verified Software Units14

● Enhanced capabilities for modular foundational verification of C code using VST

● Enforce SW engineering principles using SL + type theory + proof assistant

● Performance improvements due to lightweight representation of Clight programs

● Current & future work:

● additional reasoning principles for objects, CertiCoq-FFI

● applications with concurrency (fine-grained locking, lockfree, …)

●              OPS-5G: SDN control plane verification and interaction with

● Paper at ESOP’21, stack example in next release of Software Foundations, Volume 5

Conclusion

Visit https://github.com/coq/platform for installer

or https://vst.cs.princeton.edu to access git master.

Questions? See VST mailing list, stackoverflow

https://vst.cs.princeton.edu/
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