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I
n  a  re ce n t  column, I ques-
tioned whether there was any 
“science” in computer science. 
This provoked a great many 
responses that provided some  

very valuable perspective. To the degree 
that some aspects of computing are 
subject to analysis and modeling, it is 
fair to say there is a rigorous element of 
science in our field. Computability, ana-
lytical estimates of work to factor num-
bers, estimates of parsing complexity in 
languages, estimates of the precision of 
computations, computational costs of 
NP-complete problems, among others, 
fall into the category I call “analytic” in 
the sense we can say fairly strongly how 
computational cost grows with scale, for 
example. In recent conversations with 
Alan Kay, Edward Feigenbaum, Leonard 
Kleinrock, and Judea Pearl, I have come 
to believe that certain properties con-
tribute to our ability to analyze and pre-
dict behaviors in software space. 

Alan Kay spoke eloquently at a recent 
event honoring Judea Pearl’s ACM Tur-
ing Award. Among the points that Alan 
made was the observation that comput-
ing is not static. Rather it is a dynamic 
process and often is best characterized 
as interactions among processes, es-
pecially in a networked environment. 
The challenge in understanding com-
putational processes is managing the 
explosive state space arising from the 
interaction of processes with inputs, 
outputs, and with each other.

In a recent discussion with Edward 
Feigenbaum, he noted that models used 
in hardware analysis are more tractable 
than those used in software analysis be-
cause what is possible in the “physical” 
world necessarily constrains the search 
for solutions. Software systems are de-
signed and analyzed in “logical” space, 
in which there is far less structure to ex-
ploit in the analysis. However, the enor-

mous computing speeds possible today, 
combined with some structuring of the 
software design space, might allow deep 
and effective analyses of software as yet 
unavailable to mathematical methods 
or human thought. He recalled how very 
fast search, structured by some knowl-
edge of chess, allowed IBM’s Deep Blue 
to defeat the world’s chess champion 
Kasparov. In one game, Deep Blue, ex-
ploring hundreds of millions of possi-
bilities in the analysis of a move, found 
a brilliant solution path, probably never 
before seen, that led Kasparov to resign 
from the game and lose of the match.

Structure that constrains state spaces 
is sometimes conferred through ab-
straction. Here we get to another key 
observation about the potential for 
scientific approaches to computer sci-
ence. To the degree that abstraction 
eliminates unimportant details and re-
veals structure, abstraction is a powerful 
analytical tool. It strikes me that Chaos 
theory illustrates this notion because 
patterns emerge in this theory despite 
the apparent randomness of the pro-
cesses it seeks to analyze. If programs 
and algorithms are subject to suitable 
abstraction, it may be possible to model 
them with adequate but abstract fidel-
ity so as to render the model analyzable. 
An example is found in queueing theory 
in which complex processes are mod-
eled as networks of queues. The models 
are analytic under the right conditions. 
Kleinrock made enormous contribu-
tions to network design and analysis 
through the construction of queueing 
theoretic models. His most famous con-
tribution was the recognition that the 
state space explosion could be tamed 
by his Independence assumption in 
which the statistics of the traffic flowing 
through the network were regenerated 
at each node using statistically identical 
but independent variables. 

Modeling is a form of abstraction and 
is a powerful tool in the lexicon of com-
puter science. This leads me to a final 
observation illustrated by Judea Pearl’s 
brilliant lecture on the use of Bayesian 
analysis to draw conclusions from prob-
lems involving probabilities rather than 
fixed values. Pearl’s theories of causal 
reasoning in conditional probabilities 
are often aided by graph-like models 
linking the various conditional state-
ments in chains of cause and effect. The 
diagrams make it possible to construct 
analytic equations that characterize the 
problem and make the solution com-
putable. It struck me that Pearl’s use of 
diagrams had an analogue in Richard 
Feynman’s diagrams of quantum inter-
actions. These diagrams are abstractions 
of complex processes that aid our ability 
to analyze and make predictions about 
their behavior. Pearl’s diagrams may 
prove as powerful for science (not only 
computer science) as Feynman’s have 
for quantum physics and cosmology.

I have come away from this foray into 
computer ‘science’ with several conclu-
sions. The first is there really is science 
to be found in computer science. The 
second is abstraction and modeling are 
key to making things analytic. The third 
is there is a lot of complex detail in com-
puter programs and collections of inter-
acting programs that has not admitted 
much in the way of abstraction or mod-
eling, rendering these complex systems 
difficult to analyze. Finally, I believe 
our ability to understand and predict 
software behavior may rest in the inven-
tion of better high-level programming 
languages that allow details to be sup-
pressed and models to emerge. I hope 
Alan Kay’s speculation will lead to seri-
ous improvements in the way we design 
and program computer systems.
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