
december 2012 | vol. 55 | no. 12 | communications of the acm 7

from the president

Computer Science Revisited
DOI: 10.1145/2380656.2380658	 Vinton G. Cerf

I
n a re ce n t column, I ques-
tioned whether there was any
“science” in computer science.
This provoked a great many
responses that provided some

very valuable perspective. To the degree
that some aspects of computing are
subject to analysis and modeling, it is
fair to say there is a rigorous element of
science in our field. Computability, ana-
lytical estimates of work to factor num-
bers, estimates of parsing complexity in
languages, estimates of the precision of
computations, computational costs of
NP-complete problems, among others,
fall into the category I call “analytic” in
the sense we can say fairly strongly how
computational cost grows with scale, for
example. In recent conversations with
Alan Kay, Edward Feigenbaum, Leonard
Kleinrock, and Judea Pearl, I have come
to believe that certain properties con-
tribute to our ability to analyze and pre-
dict behaviors in software space.

Alan Kay spoke eloquently at a recent
event honoring Judea Pearl’s ACM Tur-
ing Award. Among the points that Alan
made was the observation that comput-
ing is not static. Rather it is a dynamic
process and often is best characterized
as interactions among processes, es-
pecially in a networked environment.
The challenge in understanding com-
putational processes is managing the
explosive state space arising from the
interaction of processes with inputs,
outputs, and with each other.

In a recent discussion with Edward
Feigenbaum, he noted that models used
in hardware analysis are more tractable
than those used in software analysis be-
cause what is possible in the “physical”
world necessarily constrains the search
for solutions. Software systems are de-
signed and analyzed in “logical” space,
in which there is far less structure to ex-
ploit in the analysis. However, the enor-

mous computing speeds possible today,
combined with some structuring of the
software design space, might allow deep
and effective analyses of software as yet
unavailable to mathematical methods
or human thought. He recalled how very
fast search, structured by some knowl-
edge of chess, allowed IBM’s Deep Blue
to defeat the world’s chess champion
Kasparov. In one game, Deep Blue, ex-
ploring hundreds of millions of possi-
bilities in the analysis of a move, found
a brilliant solution path, probably never
before seen, that led Kasparov to resign
from the game and lose of the match.

Structure that constrains state spaces
is sometimes conferred through ab-
straction. Here we get to another key
observation about the potential for
scientific approaches to computer sci-
ence. To the degree that abstraction
eliminates unimportant details and re-
veals structure, abstraction is a powerful
analytical tool. It strikes me that Chaos
theory illustrates this notion because
patterns emerge in this theory despite
the apparent randomness of the pro-
cesses it seeks to analyze. If programs
and algorithms are subject to suitable
abstraction, it may be possible to model
them with adequate but abstract fidel-
ity so as to render the model analyzable.
An example is found in queueing theory
in which complex processes are mod-
eled as networks of queues. The models
are analytic under the right conditions.
Kleinrock made enormous contribu-
tions to network design and analysis
through the construction of queueing
theoretic models. His most famous con-
tribution was the recognition that the
state space explosion could be tamed
by his Independence assumption in
which the statistics of the traffic flowing
through the network were regenerated
at each node using statistically identical
but independent variables.

Modeling is a form of abstraction and
is a powerful tool in the lexicon of com-
puter science. This leads me to a final
observation illustrated by Judea Pearl’s
brilliant lecture on the use of Bayesian
analysis to draw conclusions from prob-
lems involving probabilities rather than
fixed values. Pearl’s theories of causal
reasoning in conditional probabilities
are often aided by graph-like models
linking the various conditional state-
ments in chains of cause and effect. The
diagrams make it possible to construct
analytic equations that characterize the
problem and make the solution com-
putable. It struck me that Pearl’s use of
diagrams had an analogue in Richard
Feynman’s diagrams of quantum inter-
actions. These diagrams are abstractions
of complex processes that aid our ability
to analyze and make predictions about
their behavior. Pearl’s diagrams may
prove as powerful for science (not only
computer science) as Feynman’s have
for quantum physics and cosmology.

I have come away from this foray into
computer ‘science’ with several conclu-
sions. The first is there really is science
to be found in computer science. The
second is abstraction and modeling are
key to making things analytic. The third
is there is a lot of complex detail in com-
puter programs and collections of inter-
acting programs that has not admitted
much in the way of abstraction or mod-
eling, rendering these complex systems
difficult to analyze. Finally, I believe
our ability to understand and predict
software behavior may rest in the inven-
tion of better high-level programming
languages that allow details to be sup-
pressed and models to emerge. I hope
Alan Kay’s speculation will lead to seri-
ous improvements in the way we design
and program computer systems.

Vinton G. Cerf, ACM PRESIDENT

