
Computing Under Occupation

Klaus Kursawe and Stefan Katzenbeisser

Philips Research

Information and System Security Group

Eindhoven, The Netherlands

{klaus.kursawe, stefan.katzenbeisser}@philips.com

ABSTRACT
Recent investigations have found a massively increasing pro-
fessionalisation and organization of attacks executed on con-
sumer computing systems. Simultaneously, the systems we
are trying to defend are getting more and more complex
and networked, while promising security technologies—such
as trusted boot and strong process isolation—appear to have
troubles finding their way into mainstream devices.

This leads us to the conclusion that we may be forced
to accept that the security war is lost for now, and that a
considerable portion of all consumer PCs is under control of
some organized malicious entity. In this work, we investigate
the options left to the defenders in this scenario: Assuming
that PC World is under control of a hostile force, how can
we (a) survive (i.e., work) in a meaningful way, and (b)
destroy the economic value for the attacker without severely
damaging our own resources.

1. INTRODUCTION
The year is 2015 A.D. PC-Land is entirely occupied by the
legions of Spam. Well, not entirely. One small village of
indomitable users still holds out against the invaders. And
life is not easy for the spammers who garrison the fortified
camps of Windum, Linos, Phishinum and Wormus . . .

Most work in the area of computer security addresses the
problems of protecting a computer system against attacks
and providing measures for recovery once a system has been
compromised. Those include, for example, research on virus
scanners, software security and intrusion detection, secure
backups, audit logs and patch distribution. For small PC-
based platforms, in spite of great advances in security tech-
nology this approach has shown limited success. The rates
of corrupted computers are raising dramatically, with num-
bers claiming up to a quarter of all PCs on the Internet
being controlled by some malicious entity.

In contrast to the typical attacks seen in the 1990’s, which
were mainly performed by individuals out of curiosity, we are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NSPW’07 September 18–21, 2007, New Hampshire, USA.
Copyright 2007 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

increasingly witnessing large-scale attacks, driven by com-
mercial motives, like large-scale data or identity theft, distri-
bution of SPAM or the creation of bot-nets for Distributed
Denial-of-Service (DDoS) attacks. A recent Symantec re-
port [15] concludes that “organizations will have to deal with
a well entrenched, experienced, and dedicated group of bot
network owners instead of a population of hobby hackers.”

In a worrisome tendency, the underground part of the
computing industry has followed the example of the major
companies and turned itself from a product to a service ori-
ented industry. For a moderate fee (starting at about $1000)
one can purchase hand tailored Trojans, and for a little more
the producers o↵er help with the distribution, server space
to collect gathered data, and even a support hotline [7]. This
underground industry has a surprisingly refined job struc-
ture; it contains the actual programmers, gatherers, service
personnel, quality testers, etc. In addition, we see some
competition between bot-net operators. Already now, bot-
nets are competing against each other, i.e., bots that try to
protect an infected computer from competing bots in order
to maintain a steady network.

In addition to enhanced and increasingly organized at-
tacker activities, attack tools are getting more and more
sophisticated [11]. Consider the example of Trojans: users
do no longer need to actively take part in the distribution;
a simple visit to the wrong website can install a Trojan
by a drive-by-infection. This also makes it harder to react
quickly—modern Trojans do not spread aggressively like the
early worms (which quickly attracted attention), but may
spread slowly and undetected; a recently discovered Tro-
jan has been in the wild for at least 50 days before being
found [7]. Even sophisticated techniques designed to defend
computer systems can be ‘hijacked’ by attackers in order to
automate the generation of new malware [13]. As another
example, bot-nets are increasingly structured in a peer-to-
peer fashion, and do not require a central control server.
This makes it considerably more di�cult to shut them down.

Future technologies suggest even more trouble. Polymor-
phic attack software (which currently makes up about 3% of
the malicious code [15]) can completely change its shape to
the point that there is no more commonality between two
instances of the attack program than between two random
bit strings. Attacks on underlying libraries have led to se-
curity exploits that are largely browser independent, as all
popular browsers build on the same base libraries. Virtual
machine based root kits can hide deeply under the operating
system and be practically undetectable unless the machine
boots from an alternative source.

On the defending side, advances are progressing slowly.
Trusted computing o↵ers a chance to detect manipulations,
but is adopted at a glacial speed and loses much of its poten-
tial in the presence of insecure operating systems. Malware
scanners are continuously improving, but still it requires a
major e↵ort to keep them up-to-date; furthermore, even cur-
rent virus scanners o↵er little security against fast-spreading
malware.

1.1 The New Paradigm
Given the radical advances on organization and technol-

ogy on the attacker side, we may end up in a situation where
it is virtually impossible to keep an attacker out of a signif-
icant number of PCs worldwide. In this case, the focus will
shift from protecting a computer system from attacks to-
wards technologies that allow us to cope with infections and
still o↵er some limited form of security, both for the attacked
systems and the Internet as a whole. We thus propose to
investigate a new paradigm for information security:

Assume that we lose the security war, so that
a certain percentage of all PCs on the Internet
are compromised through malware. Can we, even
on ‘occupied’ computers, still o↵er some limited
form of security? And, given that most attacks
are economically motivated, can we destroy the
business model of the attackers instead of beef-
ing up security measures, in order to decrease the
economic value of ‘occupied’ computers?

Thus, in this paper we make the challenging assumption that
attack technology will advance more quickly than defense
methods, resulting in a large portion of all computer systems
being controlled by some organized group of bot-net owners.
We furthermore assume that the main motivation of the
attackers is economical, in that they o↵er services—like data
and identity theft, SPAM distribution and DDoS attacks—
to third parties and collect revenues.

We propose to investigate the following two related prob-
lems in more detail:

• Assuming that a PC is controlled by a malicious en-
tity, whose aim is to maximize profit out of its ‘pos-
session’. Can we—even in the presence of a malicious
attacker—o↵er some limited form of security for the
most valuable transactions (such as e-banking) or as-
sets (such as private files)?

• Can we make the ‘business’ of the attackers less attrac-
tive by applying security technologies that are partic-
ularly tailored towards destroying the business model
of the attackers? Rather than prohibiting an infection
of a computer in the first place (which may be too
challenging and costly), can we use technologies that
make it economically unattractive to attack a system?

We believe that a systematic study of those two questions
will become a central issue for next-generation Internet se-
curity mechanisms. In this paper, we first briefly sketch in
Section 2 the business model of the attackers applied so far.
Subsequently, in Section 3 we propose a number of tools
that can be used on ‘occupied’ computers to provide secu-
rity for the most precious tasks and documents and decrease
the overall value of an ‘occupied’ computer for an attacker.
The central goal of the techniques presented in the paper is

to make it cost-ine�cient to use the computer, rather than
increasing the cost of gaining access in the first place. Here,
cost-ine�ciency can be achieved by causing cost (mostly due
to enforcing human e↵ort), but also by reducing the poten-
tial for the attacker to earn money by abusing the victim
computer, or by increasing the risk for the attacker. Given
the hardness of the problem, none of our approaches can
provide a complete solution, and substantial work has to be
done to make them work in practice; however, we do think
that our ideas point in the right direction, and can inspire
further work to undermine the economics of cybercrime.

1.2 Related Problems
‘Computing under occupation’ can be stated as the prob-

lem of securely performing some pre-determined task on an
untrusted platform. There has been an increased interest—
in various fields of computing—for solutions that enable the
secure execution of code on a potentially untrusted platform;
even though partial solutions have been obtained, many se-
curity problems are still open.

The most prominent field is Digital Rights Management
(DRM). Here, some data (usually entertainment content)
has to be rendered and displayed on the users’ PC, while
the system tries to prevent the user from obtaining a dig-
ital copy of the data. Even though the DRM player may
be considered trustworthy, the underlying operating system
may be not. This has led to a number of developments,
including device-renderer authentication, code obfuscation,
whitebox cryptography and means for revocation of com-
promised players. Similarly, copy protection of software at-
tempts to assure that only legitimate software runs on a
host, even if the attacker has full access over the system.
No security solution exists so far that enables perfectly se-
cure DRM or copy protection schemes; we rather witness an
‘arms race’, where system designers try to raise the level of
e↵ort required for an attacker to compromise a system.

Related questions arise in the field of grid computing,
where a computation task is distributed onto a network of
heterogeneous computers. If parts of the network cannot
be trusted to perform the scheduled actions correctly and
honestly, technological measures must be available to detect
the dishonest network nodes and deprive them of critical in-
formation. Similarly, mobile agents, which travel between
di↵erent hosts, face the problem of protecting their critical
data from potentially compromised hosts.

Comparable problems arise in the field of online games as
well. Here, an attacker—usually a dissatisfied player—tries
to alter the game program to his advantage, for example
by getting additional information or by automating some
actions. Again, a presumably ‘trustworthy’ software (the
game client) has to operate in a hostile environment. For
example, bots can enhance the gaming capability of a user
beyond a level that can be expected from a human; even
implementation details, like the imperfections of the under-
lying data transmission network, repeatedly have been used
to gain in-game advantages. In-game cheating threatens the
economic value of game assets and hence has real-world eco-
nomic implications.

2. ECONOMICS OF THE ATTACKER
While the early bot-nets appear to have been primarily

run by amateurs because ‘they could’, modern bot-nets are
professional enterprises, with the eventual goal of making

money. Thus, great security benefit can be obtained from
decreasing the economic value of the system for an attacker.
If no money can be made out of a bot-net, attackers will
eventually shift to more lucrative targets.

There are several possibilities for an attacker to convert
resources of ‘occupied’ computers into financial gain (see
also [2]):

• System resources. The computer can be used
to perform computation, or more likely, the net-
work interface can be used to extend the size of the
bot-net, execute a denial of service attack, or send
SPAM/Phishing mails. The users’ computer can also
serve as a distribution point for illegal data. As a rel-
atively new form of fraud, the system resources can
be used to simulate a user watching online advertise-
ments, thus generating corresponding revenues.

Economically, the rental fees for a bot-week (i.e., one
corrupted computer for one week time) are between
2.5 and 6 cents for a spambot, or about $1 a week for
the ‘raw’ bot [14, 8].

A slight tendency appears to be that attackers are
moving from the low margin commercial SPAM to
the more profitable Phishing and stock manipulation
SPAM; this might be due to increased competition and
user awareness, and due to the fact that spamming is
increasingly becoming illegal in the first place, making
it easier for the attacker to go ‘all the way’ into ille-
gality rather than maintaining some traces of honest
business.1

• Data theft. Data on ‘occupied’ systems can be
turned into money. Valuable data may include the
identity of the users (including, but not limited to,
credit card information), the users data on other peo-
ple (e.g., email addresses of friends), or commercial
data (e.g., corporate email stored on a personal com-
puter). Credit card data can be sold for as much as
$25 (with all credentials included) down to $6 (for the
number alone).

• Identity theft. Another use for a stolen ID is to
abuse the users reputation; a hacked eBay account,
for example, can be used to make positive comments
about a fraudulent dealer. Alternatively, the account
can be used to perform virtual slander on a competitor.

• User Transactions. In a more advanced e-banking
fraud, the attacker taps directly into the users’ trans-
actions with a bank and redirects authorized transac-
tions; as most e-banking architectures do not allow a
user to reliably verify the transaction she authorizes,
there is little security against this attack. The authors
are not aware of the monetary dimension of this prob-
lem. However, given the opportunities, this appears to
be one of the more rewarding attacks.

1An exception to the attack economics is the Nigeria or 419
Scam, in which SPAM email is used to find a victim for
traditional fraud. Though response rates are low, successful
attacks can earn the order of $100000. Examples to attack
the economics behind this can be found on www.419eaters.

com.

• User blackmailing. Finally, the user can be held
hostage and directly be forced to pay; the attacker may
encrypt the hard-drive and only decrypt it on payment,
or threaten to publish the users’ private data. So far,
most reported attacks of this kind were not overly ad-
vanced; the attackers comitted simple mistakes such
as using the same password for all infected machines.
More advanced attacks are sure to come and will use
some of the more complex social engineering attacks
[4].

In the case of the Trojan Trojan.PgPCoder, the at-
tacker demanded $200 to release the data; no numbers
have been made available on the actual revenue of the
attacker. On the non-monetary side, a first case of
bullying a user into making explicit pictures has ap-
peared already. So far, however, this seems to be a
rather uncommon attack, and the attacker only used
the obtained material for private purposes.

Apart from monetary gain, attackers may have di↵erent
motivations that lead to indirect gain. Most prominent here
is the spreading of the attack by using the corrupted plat-
forms to identify and infect further platforms. Furthermore,
the attacker can use the platform for anonymity—by pro-
viding a proxy for his own online activities or for storage of
illegal data such as attack code or pornography.

2.1 Services
In addition to more refined attacks, attackers have diver-

sified into specialized roles; in business terms, there is little
vertical integration among the attackers. Rather, a service
culture has evolved, including user hotlines. Attack Trojans
targeting a special institute (e.g., a bank) can be acquired for
about $1000 [7]; for a premium, one can also rent hijacked
server space to gather the stolen data and hijacked websites
to spread the Trojan. In addition, the attacker community
is building up some substantial infrastructure to support the
communication needed to connect the various services.

In the early days of cybercrime, the infrastructure largely
consisted of messaging boards, such as the now defunct
Shadowcrew forum. However, the services o↵ered were al-
ready extensive; in a 2003 analysis, researchers describe fully
automated services providing any user with (some) valid
credit card numbers and user accounts, automatic credit
card validity checks, and even merchant addresses suscepti-
ble to credit card fraud [12].

After the pressure on cybercrime increased, the infrastruc-
ture also started including security software for the protec-
tion against government agents; lately, a new instant mes-
senger called CarderIM was distributed, allowing to build
up a secure communication network.

While this specialisation is a sign of more profesionalism
and thus increases the problem, it also may o↵er new ways
of defence, as it requires additional logistics on the side of
the attacker. As di↵erent, not necessarily mutually trusting
parties are now involved (already, the first cases have been
reported on credit card thieves scaming spam distributers),
the stolen assets need to be easily transfer- and appraisable.
This can be used, for example, by forcing the attacker to per-
from an online attack (making it harder to sell the assets),
or to add fake data that will make it di�cult to appraise the
validity of the assets.

2.2 Attack Model
“Crime is often harder work than a regular job. Every time
I’ve done something—it doesn’t matter what it is, counter-
feiting or whatever—it’s always been more work than a regu-
lar job would have been. And I would have much rather had
a real job than be involved in a criminal act because it’s less
. . . stress.”

(David Thomas, member of ‘Shadowcrew’)

Our working assumption is that a victim is not subject to
a targeted attack, i.e., the victim does not posses a special
asset the attacker is after. Rather, the victim is a normal
PC user indistinguishable from millions of others, with the
same assets millions of others have.

Another working assumption is that critical infrastruc-
tures—such as banking portals—are secure. While this may
not necessarily be true, one can assume that large service
providers are significantly better protected than the average
consumer PC, as a successful attack on one has grave con-
sequences. For example, today it is much easier to compro-
mise an arbitrary personal computer on the Internet than to
hack into a well-protected server, due to ignorance against
security measures and lack of expertise of the average home
user. Thus, privately owned computers are much easier tar-
gets, likely to be attacked first.

As noted above, the ultimate goal of the attacker is to get
some form of profit. In most cases the attacker strives for
financial gain, though sometimes it is enough to obtain re-
sources, such as storage and network capacity, for an illegal
content distribution network or resources for a targeted at-
tack on a high value target (e.g., the server of a competitor).

To defend against above attackers, we consider a dual
strategy. For one, we try to limit the damage an attacker can
do in spite of him having full control over the victims’ com-
puter. Secondly, we try to make attacks more less cost e�-
cient; ideally, one can increase the workload of the attacker
in order to prevent economic gain. For consumer PCs, this
is not implausible; the earnings on an average consumer PC
are relatively low, and the business only pays o↵ as attacks
on millions of PCs simultaneously are cheap.

In future work, one may want to consider targeted attacks
on corporate networks as well; however, in those cases dif-
ferent economic incentives are at work, as a single attack
may yield substantial profit.

3. TOOLS
In this section, we give a preliminary inventory of tools

that may be used to limit the damage inflicted on ‘occupied’
computers, and make it harder for an attacker to extract
profit from an attack.

While full protection may not be possible ‘under occupa-
tion’, it is often not needed—we may concentrate on means
that make an attack cost-ine�cient, e.g., by forcing the at-
tacker to apply human work that interferes with his business
model.

3.1 Lies & Deception
There are basically two ways to protect critical data: Ei-

ther it is not available to the attacker in the first place, or
it is not recognizable by him as critical data. If unavail-

ability is not an option, the user can try to provide enough
fake data which is indistinguishable from the real data. This
makes the whole data set worthless.

For example, the user can store a set of 100 authentic
looking credit card numbers on the computer, 99 of which
are not linked to any account. Currently, credit card deal-
ers valuate a set of stolen credit card numbers by making
test purchases with a small sample. If 99% of the numbers
available are fake, this model does not work anymore, and
the vendor needs to test every number individually (which
also increases the risk of getting caught). With assistance of
the credit card companies this model can be extended, and
the fake data can be used as a canary. If any of the 99 fake
numbers is used, we do know that the users’ computer has
been harvested for credit card numbers, and that the real
number is in danger; this would be a good indicator to block
the real number and replace it by a new one. (However, on
the downside this opens the possibility of a denial-of-service
attack). An unresolved issue here it how this data can be
managed without creating too much overhead for the user.
Obviously, it is not feasible to store on the platform which
numbers are real and which ones are fake, so the computer
can not easily hide the additional information from the user.
A start point is to protect easy targets, e.g., add bogus mail
folders with credit card related fake mail, and some saved
form fields in the browser that relate to non existing or never
used websites.

A similar technique can be performed with any privacy
relevant or commercial data; by placing a number of random
pictures, letters, texts and email addresses on the computers
hard-drive, the attacker will have a harder time to figure
out what is critical, and has to apply costly human work
to achieve his goal. (Note that some proactive detection
tools for mailing worms already use bait e-mail addresses to
detect infections with unknown malware, e.g. see [6]).

For more sophisticated attacks, an active form of lying is
possible. For example, a phishing attack aiming for eBay
accounts could be bombarded with realistic looking fake ac-
counts; only on trying to actually use one of those accounts,
the attacker would realize the fake. In a more advanced de-
fense, phishers could be beaten with their own weapons. To
this end, one could design a complete replica of a commer-
cial site (such as eBay), and redirect all of the fake accounts
there. The attacker can then happily perform transactions
on the fake site, without ever having any relevance on the
real world. Again, this can be combined with a canary tech-
nique; if a specific IP address uses a fake account, one can
safely assume that this address is currently under control of
some malicious entity and thus block all accounts used from
this IP address for some time.

Of course none of these techniques are perfect; an attacker
can observe the user behavior and thus find out which credit
card numbers or email addresses are actually used, and care-
ful testing will tell a good account from a bad one. This does
cost time and e↵ort, though, and the attacker may easily
trigger a canary and thus render potentially valuable data
useless.

3.2 Hardware Assistance
If a PC (and its operating system) cannot be trusted, a

safe way seems to be to resort to trusted hardware, which
cannot be changed by an attacker. While some approaches
are being developed here (such as in the Trusted Comput-

ing Group), the adoption in commercial systems is frustrat-
ingly slow and full integration on consumer PCs will not be
achieved in the coming years.

Thus, we concentrate on technologies that can be used
in parallel to the operating system, without need for deep
integration.

• Specialized Firewall. Most users have a pretty good
idea when they need high speed Internet connections
and when they don’t. A specialized firewall can thus
throttle the Internet speed at low hours to the extent
that abuse becomes hard; it may still allow access to
low ressource services (e.g., for security updates or the
users mail server), but prevent high troughput opera-
tions such as spam bots. By using certified services,
the firewall can also selectively kill all packets going
the wrong way, or delay them to the extent that the
computer becomes too slow to be of any value to the
attackerr. This, however, would require knowledge
of good or bad services, which seems a substantially
harder problem to solve. Throttling of the network
connection has already been explored in order to re-
strict spreading of viruses [17]; experimental results
show that throttling indeed allows to limit the prop-
agation of fast-spreading worms, while not impeding
ordinary tra�c. Similar methods can be applied for
other types of attacks as well.

Unusual behavior (e.g., massive increase of bandwidth
use without user interaction) may trigger an alarm
and/or a limitation of the available bandwidth to the
point that only basic services (e.g., the network timing,
email polling) function properly; in a more complex
variation, the firewall can also recognize protocols and
thus block specially critical protocols such as SMTP.

Another function can be the insertion of passwords and
other critical data. In this case, the firewall serves as
a proxy for secure applications; if a user connects to
a secure website, it can replace placeholders with the
appropriate password or the users credit card number.
This way, critical data never needs to reside on the
untrusted computer.

One of the problems with a hardware module moni-
toring and manipulating Internet streams is encrypted
tra�c—if the hardware module cannot read a stream,
it cannot operate on it. There are two basic ways to al-
low an external module to deal with encrypted tra�c.
For one, the module can build an encrypted channel to
the application and a separate channel to the service
provider. While this is relatively easy to implement, it
has the disadvantage that the application itself cannot
securely identify the service provider anymore; to this
end, a separate application would be needed to allow
the hardware module to check the certificates of the
service provider and display it to the user. However,
the approach has the advantage that it is implemented
on protocol rather than TCP/IP level, so the hardware
module can receive a full protocol message (e.g., an
http request) before sending it on.

The second possibility is that the application is mod-
ified to reveal its communication keys to the hard-
ware module. As most standard protocols (such as
SSL) generate random session keys, this needs to be

an ongoing activity. The hardware module then can
decrypt the data stream, and thus analyze and modify
at leisure.

In both cases, the hardware module has to reject all
tra�c it cannot decrypt, at least for known protocols
(such as SOAP).

• Write-protected memory. Write protected mem-
ory is available rather cheaply today; examples are
optical discs, or USB memory sticks with a physical
write protection. More expensive solutions for PC
hard drives exist as well, though they do not seem to
penetrate the mass market. Write-protected memory
can be used to safely store critical applications, which
can be simple programs like a secure shell implemen-
tation or even a full operating system. In a more ad-
vanced setup, it may be possible to store the static
parts of an operating system on a physically write-
protected disc, while keeping the dynamic parts in or-
dinary re-writable memory. A virtual file system along
the lines of UnionFS can merge the two and present a
unified view on which standard operating systems can
work.

• Hardware based authentication. Hardware-based
authentication tokens, i.e., tokens that perform a small
challenge response protocol with the service provider
and thus prove that the authenticating party has phys-
ical access to the token, are already widely available.
While currently mostly used for banking or cooperate
networks, a recent field trial by PayPal raises hope
that such tokens may become a commodity. Use of
such tokens makes it impossible for an attacker to steal
authentication information, forcing him to perform a
significantly more complex online attack (i.e., manip-
ulate valid transactions performed by the victim).

• Hardware Backups. A user who needs to ensure
data availability will require a backup system that can-
not possibly be disrupted by any software running on
the PC itself. While it should be possible for soft-
ware to put data onto the backup medium, deletion or
manipulation must not be possible without physical
access.

A central problem with such hardware backups is the
protection of the channel to the backup medium. If
a file is transferred to an external storage device, it is
always possible for an attacker to disrupt the commu-
nication, e.g., by encrypting the backup file. We see
two ways to avoid this problem:

– Source backups. The backup is made directly
from incoming data, e.g., the TCP/IP packets or
the keyboard strokes. While this destroys data
structures and is inappropriate for some applica-
tions (e.g., Powerpoint documents whose creation
require a lot of mouse action), it may supply a suf-
ficient emergency backup to recover most data at
reasonable cost, which would allow the owner to
not be hold ransom in blackmailing attacks.

– Verified Backups. In order to protect the chan-
nel to the backup medium, the backup server may
o↵er a means of verification: the server tests that

the backup is still valid. An easy to implement,
though not completely secure, way is to verify
that data on the backup medium is syntactically
valid; this allows the attacker to alter the data,
but not to encrypt it. For full security, the backup
server needs to report (and authenticate) the data
back to the user; for example, it could convert
parts of the backup documents into JPEG images
which are shown to the user. In combination with
a CAPTCHA-like challenge, as described below,
this allows for e↵ective data authentication.

• Reinstallations. The Swiss defense plan in case of
an attack is rather unusual. Rather than stopping the
attacking army, the plans suggest for the Swiss army
to retreat to the mountains, where it will be impossible
to beat. From there, it poses a constant threat to any
occupying force, being able to reconquer the country
as soon as the occupying army reduces numbers.

Translated to PC security, the equivalent is a secure
hardware part which is able to restore the operating
system to its old, uncorrupted state as soon as the
active attack is over. In an easy version, the secure
hardware can simply be a CDROM; every once in a
while, the entire operating system is replaced with a
clean image from the write protected CD, leaving only
the user data as it is. (Some institutions already follow
this approach and reinstall PCs at risk periodically).

3.3 CAPTCHAs
CAPTCHAs (Completely Automated Public Turing test

to tell Computers and Humans Apart) are little tasks that
should pose no problem for a human to solve, but which are
assumed to be hard for a computer [1]; examples are the
recognition of distorted letters or the content of a picture.
Currently, CAPTCHAs are mainly used to assure that a
service provider interacts with a human and not with an
automated software bot. However, CAPTCHAs can also be
used to establish a low-bandwidth communication channel
between a human and a computer over an untrusted device.
The CAPTCHA can encode, for example, authentication
information solely intended for the human user, without the
displaying computer being able to determine the embedded
information. (Note that a similar technique is currently used
by attackers: SPAM mail increasingly contains CAPTCHA-
like images carrying the SPAM message in order to avoid
automated filtering).

Unfortunately, CAPTCHAs have weaknesses as well.
Apart from improvements in Artificial Intelligence that re-
quire more complicated CAPTCHAs, attackers have found
and implemented a simple way to harness human computing
power: To this end, the attackers o↵er free porn sites that
only require the user to solve a small CAPTCHA to gain
full access. The task given to the viewer of the site is the
CAPTCHA that the attacker wants to have solved.

Though most CAPTCHAs can be broken if the attacker
has enough time, we can still use them to authenticate data
to the user (such as in the verified backup scenario described
above). Suppose, for example, that a user has a physical se-
curity token that displays a time dependent pseudorandom
value. Suppose further that a server wants to authenticate
a certain confidential piece of data to the user, which should
not be available to the displaying computer. The server can

encode the data to be authenticated in a CAPTCHA-like
manner, thereby adding a CAPTCHA challenge that is de-
pendent on the user’s pseudorandom value. This way, only
a human user is able to view the authenticated information
and only the human user who has access to the physical
token can reply with the correct answer to the challenge.
To spoof the authenticated information, the attacker would
have to be able to embed the same CAPTCHA challenge in
a di↵erent image; this has to be done fast enough to match
the changing pseudorandom code, which forces the attacker
to break the CAPTCHA quickly.

3.4 Neighborhood Watch
A central problem for protecting a computer from being

abused as a SPAM sender is that the owner has little in-
centive to take action. A well written bot does not need to
disrupt normal operations, and the user has little damage
from sending SPAM. Thus, there are few reasons for an in-
dividual user to spend money to protect his computer from
being infected by a spam bot.

One potential way of increasing user awareness could be a
system of ‘neighborhood watches’. Here, we utilise the fact
that the attacks on computers are often independent of the
geographic distribution—the way in which attackers gain ac-
cess to the platform requires certain configurations or user
behaviour, and it is di�cult for an attacker to coordiante
the locations of the attacks. Thus, there are platforms that
share one physical connection (e.g., a wireless node), but
have a reasonable probability that not all of them are cur-
rupted by the same organisation. On a low level of the com-
munication layer, they see each others data, even if they then
choose to ignore it. This feature could be used for PCs on
the line to watch each other. By analyzing tra�c (i.e., look-
ing for spoofed IP addresses or analyzing content or timing),
the neighboring PCs can detect potential sources of SPAM
and alert either the owner of the PC or the ISP to trigger a
closer investigation (in e↵ect, this would implement a kind
of intrusion detection system, without requiring dedicated
machines to observe the network).

Systems for neighborhood watch have been proposed re-
cently to cope with worm infections, e.g., in Vigilante [5] or
Sweeper [16]. In this context, several hosts collaboratively
detect new vulnerabilities and distribute filters to block fur-
ther infections. In a similar concept, collections of large
numbers of instances of the same application (‘application
communities’) may share the burden of monitoring for flaws
and attacks and notify the rest of the community [9]; the
same concept can also be applied to enhance attack soft-
ware [10].

In addition, it is also possible to distribute certain crit-
ical tasks on di↵erent computers; this way, no single com-
puter needs to store all critical data needed for some com-
putation, requiring the attacker to perform an online attack
rather than an o✏ine one. Also, the di↵erent platforms can
perform plausibility tests on each others operations. As a
concrete example, access control information can be secret
shared between the platforms, requiring every platform to
do an operation for the number to be sent out. An attacker
that has compromised only some of the nodes may be able
to start a transaction (and ask the other platforms to finalise
the computation), but cannot get the credentials from the
platform. In addition, the secondary platforms can run some
sort of intrusion detection, and raise a red flag if, for exam-

ple, the credentials are used at a time the user usually is
asleep.

While there is a vast literature on Byzantine fault toler-
ance and grid computing that adresses copllaboration be-
tween mutually untrusted parties, little work has been done
on applying those techniques to such mudane tasks as a
credit card payment; while it seems plausible, this applica-
tion does raise new questions such as dealing with unreach-
able parties (as opposed to normal peer-to-peer protocols it
seems di�cult here to choose random peers in the network,
as the peer needs to have some secret related to the original
platform) and privacy issues.

3.5 Storage Space
As long as an attacker in possession of a bot-net can dis-

tribute storage and computation e↵ort onto the net, he has
practically unlimited computation and storage power. How-
ever, if stolen data is sold on, it needs to be gathered at a
central place; the customer of a data harvester will barely
want the data distributed over a number of hacked ma-
chines, to which connecting to always poses some risk of
being caught.

Therefore, space (and to some extent, computation time)
can be used as a bottleneck. Suppose, for example, authen-
tication to some service required a one gigabyte key. This is
easy to implement, e.g., by using some huge lookup-table in
a challenge–response authentication protocol. In this case,
storage and transportation of 10,000 stolen authentication
keys is a major problem, undermining the ability to gather
authentication data and sell it on to a professional exploiter.
The perforemance overhead on users side can be kept reason-
ably limited though, is it is not necessary to access the en-
tire key every time; rather, every time the key is used, some
di↵erent entries in the lookup table are accessed; this also
allows scaling up the key size if storage becomes cheaper.

While storage price may not be a problem for the attacker,
this mechanism makes e�cient reselling access data di�cult.
In any cases, illegaly obtained data is temporarily stored on
hacked servers; increasing the storage requirement to the
order of hundreds of Gigabyte (for a reasonably large set
of access data) makes it harder to find appropriate servers,
and increases the risk of detection, both during storage and
transfer.

3.6 Software Security
In the worlds of DRM and online game security, a number

of technologies are being developed to secure software pro-
grams running on a host that potentially cannot be trusted.
The basic methods used are obfuscation (i.e., writing the
code in a way that makes reverse engineering hard) and self
checking code (i.e., code that detects tampering and shuts
itself down if necessary). Unfortunately, it is hard to make
solid statements on the security gained by such technolo-
gies, and to our knowledge no analysis has been performed
on the e↵ort required to break modern obfuscation and self-
protection schemes; it has even been conjectured that secure
obfuscation technologies do not exist [3].

It does seem possible, however, to automatically gener-
ate a large number of di↵erent obfuscated instances of a
particular program in a way that no automatic reverse engi-
neering of all instances is possible. An attacker, who wants
to extract a secret out of the program (such as a private sig-
nature key) is thus forced to perform manual work for every

program instance he attacks, rather than implementing one
attack software, which automatically extracts secrets from
all software images. This will make large-scale attacks un-
economical, as each individual piece of software needs to be
manually broken. Examples for software that can be pro-
tected this way are banking access software or VPN clients
containing critical keys.

4. CONCLUSIONS
In this paper, we made the challenging assumption that,

given recent advances in attack technology, we may end up
in a situation where a large portion of all consumer PCs is
under control of some malicious entity. We proposed to in-
vestigate two new paradigms, namely how to provide some
limited form of protection even on ‘occupied’ computers and
how to reduce the economic value of an attacked system.
The authors believe that a systematic study of these two
questions will become a central issue in next-generation In-
ternet security architectures.

Acknowledgements. The authors thank Michael Locasto
and the anonymous NSPW reviewers for valuable comments
that helped to sharpen the paradigm put forth in the paper.

5. REFERENCES
[1] The CAPTCHA project. http://www.captcha.net.
[2] Hemavathy Alanandam, Pravin Mittal, Avichal Singh,

and Chris Fleizach. Cybercriminal activity.
http://www.cs.ucsd.edu/

⇠
cfleizac/

WhiteTeam-CyberCrime.pdf, 2006.
[3] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich,

A. Sahai, Salil Vadhan, and K. Yang. On the
(im)possibility of obfuscating programs. In Advances
in Cryptology—CRYPTO’01, volume 2139 of Lecture
Notes in Computer Science, pages 1–18. Springer,
2001.

[4] M. Bond and G. Danezis. A pact with the Devil. In
New Security Paradigms Workshop (NSPW’06). ACM
Press, 2006.

[5] M. Costa, J. Crowcroft, M. Castro, A. Rowstron,
L. Zhou, L. Zhang, and P. Barham. Vigilante:
End-to-end containment of internet worms. In
Proceedings of the twentieth ACM symposium on
Operating systems principles (SOSP’05), pages
133–147. ACM Press, 2005.

[6] R. Hu and A. Mok. Detecting unknown massive
mailing viruses using proactive methods. In Recent
Advances in Intrusion Detection: 7th International
Symposium, RAID 2004, volume 3224 of Lecture Notes
in Computer Science, pages 82–101. Springer, 2004.

[7] Don Jackson. Gozi trojan. http:
//www.secureworks.com/research/threats/gozi/,
2007.

[8] Carl Landwehr. Secure grid computing: An empirical
view. http://www.laas.fr/IFIPWG/
Workshops&Meetings/48/WS1/10-Landwehr.pdf, 2005.

[9] M. Locasto, S. Sidiroglou, and A. D. Keromytis:.
Software self-healing using collaborative application
communities. In Proceedings of the Network and
Distributed System Security Symposium (NDSS 2006),
2006.

[10] M. Locasto, A. Stavrou, and A. Keromytis. Dark
application communities. In New Security Paradigms
Workshop (NSPW’06). ACM Press, 2006.

[11] McAfee. Virtual criminology report.
http://www.mcafee.com/us/local content/

white papers/threat center/

wp virtual criminology report 2007.pdf, 2006.
[12] Bill McCarty. Automated identity theft. IEEE

Security and Privacy, 01(5):89–92, 2003.
[13] C. Raiciu, M. Handley, and D. Rosenblum. Exploit

hijacking: Side e↵ects of smart defenses. In
Proceedings of the 2006 SIGCOMM workshop on
Large-scale attack defense (LSAD ’06), pages 123–130,
2006.

[14] Stefan Savage. Unwanted tra�c: Roots of the
problem. http://www.iab.org/about/workshops/
unwantedtraffic/Session2 Stefan.pdf, 2006.

[15] Symantec Internet security threat report, trends for
July–December 2006. http://www.symantec.com.

[16] J. Tucek, S. Lu, C. Huang, S. Xanthos, Y. Zhou,
J. Newsome, D. Brumley, and D. Song. Sweeper: A
lightweight end-to-end system for defending against
fast worms. In Proceedings of the 2007 European
Conference on Computer Systems (EuroSys’07), pages
115–128. ACM Press, 2007.

[17] M. Williamson. Throttling viruses: Restricting
propagation to defeat malicious mobile code. In 18th
Annual Computer Security Applications Conference
(ACSAC 2002), pages 61–68. IEEE Computer Society,
2002.

