
Real-Time Runtime Monitoring

 Lee Pike | Galois, Inc. | leepike@galois.com
joint work with

Alwyn Goodloe NASA Langley Research Center

Robin Morisset École Normale Supérieure

Sebastian Niller National Institute of Aerospace

Nis Wegmann Technical University of Denmark

© 2011 Galois, Inc.

Need

How do you know your embedded software won’t fail?

 Certification (e.g., DO-178B) is largely process-oriented
 Testing exercises a small fraction of the state-space
 It's probably not formally verified

 Even if so, just a small subsystem
 And making simplifying assumptions

I'll argue: need to detect/respond at runtime

© 2011 Galois, Inc.

Yes, it's Still a Problem

2005-2008:
 Malaysia Airlines Flight 124 (Boeing 777)

 “Software anomaly”
 Qantas Airlines Flight 72 (Airbus A330)

Transient fault in the inertial reference units
 Space Shuttle STS-124 aborted launch

 Bad assumptions about distributed fault-tolerance

© 2011 Galois, Inc.

Just the FaCTS, Ma’am:
The Constraints

 Runtime monitoring for real-time embedded systems should
satisfy the FaCTS:

 FFunctionality: don’t change the target’s behavior

 CCertifiability: don't require re-certification, or make it easy
Don't go changing sources.

 TTiming: don’t interfere with the target’s timing

 SSWaP: don’t exhaust size, weight, power reserves

© 2011 Galois, Inc.

Outline

1. The Copilot language and compiler

2. Embedded domain-specific languages

3. Low-cost high-assurance

4. Pilot-study1: injecting software faults in a fault-tolerant air-
speed system

5. Conclusions

1Pun intended

© 2011 Galois, Inc.

Copilot: Embedded System Monitoring

 Copilot is a language, compiler, and
verification tools

 Compiles monitor specifications to
embedded C

 Constant time, constant space

 Generates its own scheduler: no OS
needed

 Don't inline the monitors

 Monitor program:

 Inputs: monitored memory

 Outputs: trigger functions, if a monitor is
violated

Monitor
specification

Embedded C
implementation

Scheduler

Target
program

Executable

gcc

compiler

link

gcc

Copilot

© 2011 Galois, Inc.

Copilot Language

 A simple stream language
 Think: data-flow of infinite lists (streams) – LUSTRE
 Streams give a discrete, synchronous view of real-time
 Strongly & statically typed variables with no lossy casts

let x = varW64 in
x .= [0] ++ x + 2

X → 0, 2, 4, 6 ...

© 2011 Galois, Inc.

 interpret copilotVs extVs s =

 case s of

 Const c -> repeat c

 Var v -> getElem v copilotVs

 ExtVar _ v -> checkV v (\v' -> (getElem v' extVs))

 ExtArr _ (v,s') -> checkV v (\v' -> map (\i -> getElem v' extVs

 !! fromIntegral i)

 (interpret copilotVs extVs s'))

 Append ls s' -> ls ++ interpret copilotVs extVs s'

 Drop i s' -> drop i $ interpret copilotVs extVs s'

 F f _ s' -> map f (interpret copilotVs extVs s')

 F2 f _ s0 s1 -> zipWith f (interpret copilotVs extVs s0)

 (interpret copilotVs extVs s1)

 F3 f _ s0 s1 s2 -> zipWith3 f

 (interpret copilotVs extVs s0)

 (interpret copilotVs extVs s1)

 (interpret copilotVs extVs s2)

Copilot Interpreter
(In One Slide)

Parameterized on
basic operators

© 2011 Galois, Inc.

Point #1: Embedded DSLs
Make Things Better

 A domain-specific language (DSL) is a special-purpose programming
language.

E.g., sed/awk, Simulink, R

 An embedded DSL (eDSL) is a DSL written as a library in a general-
purpose programming language

Often the host language is a functional language, e.g., Haskell,
Scheme, OCaml

eDSL

Host language

interpreter()
compiler()
...

© 2011 Galois, Inc.

Point #1: Embedded DSLs
Make Things Better

Why eDSLs?
 Lexer, parser, type-checker, etc. for free and more likely correct
 Macro language for free (the entire host language)

In eDSLs, the macro language is primary
 Libraries for free
 Much easier to make your own modifications

For Copilot: can we have the advantages of functional languages
without its limitations (timing, control-flow, memory size)?

© 2011 Galois, Inc.

Point #1: Embedded DSLs
Make Things Better

Why not?

 The DSL syntax must be a “sub-syntax” of your host
language

 In some cases, efficiency can be tricky
 More esoteric error messages
 eDSLs in certification unexplored
 Harder to make proprietary/closed sourceResearch

topics!

© 2011 Galois, Inc.

eDSLs: C'mon, Everybody's Doing It

 Eaton (embedded control systems)
 Ericsson (DSP)
 Credit Suisse and other trading houses (e.g., derivatives pricing)
 Galois (Numerous)

© 2011 Galois, Inc.

Copilot as an eDSL

Haskell

Atom

Copilot core language

Voting

Interpreter

Regular Expressions

Bounded linear-
temporal logic

Past-time LTL

...

...

http://hackage.haskell.org/package/atom

C

binary

gcc
eDSL
program

~2k LOCs

~2.3k LOCs

© 2011 Galois, Inc.

The Power of eDSLs

"If the majority of the three
engine temperature probes
has exceeded 250
degrees, then the cooler is
engaged and remains
engaged until the
temperature of the majority
of the probes drop to 250
degrees or less.
Otherwise, trigger an
immediate shutdown of the
engine.”

-- external variables
t0 = extW8 "temp_probe_0"
t1 = extW8 "temp_probe_1"
t2 = extW8 "temp_probe_2"
cooler = extB "fan_status"
-- Copilot variables
maj = varW8 "maj"
check = varB "maj_check"
overHeat = varB "over_heat"
monitor = varB "monitor"

engineMonitor = do
 let temps = map (< 250) [t0, t1, t2]
 maj .= majority temps
 check .= aMajority temps maj
 overHeat `ptltl`
 ((cooler || maj && check)
 `since' not maj)
 monitor .= not overHeat
 trigger monitor "shutoff" void

Librarie
s

© 2011 Galois, Inc.

The Power of eDSLs

distCompile program node headers =
 compile (program node) node
 (setCode (Just (headers node))) baseOpts

Some problems for conventional compilers go away
 Don't have to add new language features (often)
 Don't need scripting languages

E.g., compiling distributed monitors is just another function:

compile program node
 (setCode (Just header)) baseOpts

© 2011 Galois, Inc.

Point #2: Low-Cost High-Assurance

Who watches the watchmen?

Some lessons:

 Types are free proofs
 (Try) to avoid compiler bugs/non-standard behavior
 Compile -Wall, compile -Wall, compile -Wall
 Ensure interpreter == compiler
 Ensure interpreter == compiler, millions of times
 Test coverage (line, branch, functional call) using gcov

© 2011 Galois, Inc.

Point #2: Low-Cost High-Assurance

 Prove memory-safety.

CBMC http://www.cprover.org/cbmc/
 Verify the compilation – a “poor man's verifying compiler) (future

work)

Copilot
Specification

Haskell
program

Hard real-
time C

C implemented
interpreter

Symbolic
Interpreter

Compiler

SBV

CBMC

https://github.com/LeventErkok/sbv

http://www.cprover.org/cbmc/

© 2011 Galois, Inc.

Interlude: Pitot Failures

© 2011 Galois, Inc.

Failures cited in
 Northwest Orient Airlines Flight 6231 (1974)---3 killed

Increased climb/speed until uncontrollable stall

 Birgenair Flight 301, Boeing 757 (1996)---189 killed

One of three pitot tubes blocked; faulty air speed indicator

 Aeroperú Flight 603, Boeing 757 (1996)---70 killed

Tape left on the static port(!) gave erratic data

 Líneas Aèreas Flight 2553, Douglas DC-9 (1997)---74 killed
 Freezing caused spurious low reading, compounded with a failed

alarm system
 Speed increased beyond the plane’s capabilities

 Air France Flight 447, Airbus A330 (2009)---228 killed
 Airspeed “unclear” to pilots
 Still under investigation

 ...

Interlude: Pitot Failures

© 2011 Galois, Inc.

Test Bed

 Representative of fault-tolerant systems

 4 X STM32 microcontrollers

 ARM Cortex M3 cores clocked at 72 Mhz

 5 MPXV5004DP differential pressure
sensors

 Senses dynamic and static pitot tube
pressure

 Pitot tubes measure airspeed

 Designed to fit UAS (unpiloted air system)

Size, power, weight,...

T

© 2011 Galois, Inc.

Aircraft Configuration
Edge 540T-R2

© 2011 Galois, Inc.

Copilot Monitors

Introduced software faults to be caught by Copilot monitors:
 Abrupt airspeed change: airspeed ∆ > 12 m/s
 Fault-management assumptions

 Fault-management used the Boyer-Moore majority vote algorithm
 Check agreement between the voted values

Uses coordinating distributed monitors

 Subsequent flights:
 Ground-station communication protocol
 Other sensors

© 2011 Galois, Inc.

Monitoring Results

 Monitoring approach did not disrupt the
FaCTS properties of the observed
system

 Under ~100 C expressions per monitor
 Binaries on the order of 10k

 Monitoring via sampling works for
periodic tasks

 Next time: didn’t think to monitor for a
taped pitot tube!

© 2011 Galois, Inc.

Future Work Test-Bed

In collaboration with Portland State University

 ArduPilot autopilot
 Altitude hold (barometer & sonar)
 Position hold (GPS magnometer)
 Collision avoidance (infrared)
 Stabilization (gyroscope)
 Battery monitoring

© 2011 Galois, Inc.

Download, Develop,
Use http://leepike.github.com/Copilot/

BSD3

BSD3

© 2011 Galois, Inc.

Future Work

 The steering problem (mode change)

Right now: escape to raw C

 Automated fault-tolerant monitor generation

Monitors need 10-9 failures/hour reliability, too!

 Timing analysis: to monitor property p, need to sample at

rate r

 Security monitoring for embedded systems

© 2011 Galois, Inc.

Conclusions
 Problem space: hard real-time embedded C

 The FaCTS: Functionality, Certifiability, Timing, SWaP
 Approach: monitoring by periodic sampling

The eDSL approach

A path to fast, reliable compilers and languages

 Nobody watches the watchmen
Prove/test/verify your compiler is correct

© 2011 Galois, Inc.

Thanks

 NASA Langley's Formal Methods Group
 NASA Langley's AirSTAR Rapid Evaluation and Prototyping Group
 Dr. Ben Di Vito (COTR)

© 2011 Galois, Inc.

Appendix

© 2011 Galois, Inc.

Monitoring By Sampling

Without inlining monitors, we must sample:

 Property (011)*

 False positive (monitor misses an fault):
• Values are 0111011 but sampling 011011

 False negative (monitor signals a fault that didn’t occur):
• Values are 011011 but sampling 0111011

 Observation: with fixed periodic schedule and shared clock
• False negatives impossible

• We don’t want to re-steer an unbroken system

• False positives possible, but requires constrained misbehavior

© 2011 Galois, Inc.

Pitot Data

© 2011 Galois, Inc.

 Gui

 --> Lustre

 Scheduling on ARINC 653

 Rushby: Liam(sp? flight) the control sampling/smoothing
data

 Overflow vars monitoring

 level C system level A monitor -- DO178B

© 2011 Galois, Inc.

Stream Semantics
(Append)

let x = varW64 in

 x .= [0, 1, 2] ++ x + 3 (Copilot)

f [0, 1, 2] (Haskell)

 where f :: [Word64] -> [Word64]
 f x = x ++ f (map (+3) x)

x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ...

x = [0, 1, 2]

 (+3)
 [3, 4, 5]

 (+3)
 [6, 7, 8]
 ...

all operators are
lifted in Copilot

© 2011 Galois, Inc.

Timed Semantics

Period: duration between discrete events
Phase: offsets into the period
Example:

 x: period 4 phase 1
 y: period 4 phase 3

Copilot ensures synchronization between streams
 Assuming synchronization of phases in distributed systems: no non-

faulty processor reaches the start of phase p+1 until every non-faulty
processor has started phase p

x1(); x2();

© 2011 Galois, Inc.

Timed Semantics

Period: duration between discrete events
Phase: offsets into the period
Example:

 x: period 4 phase 1
 y: period 4 phase 3

Copilot ensures synchronization between streams
 Assuming synchronization of phases in distributed systems: no non-

faulty processor reaches the start of phase p+1 until every non-faulty
processor has started phase p

x1(); x2();

© 2011 Galois, Inc.

Stream Semantics
(Append)

let x = varW64 in

 x .= [0, 1, 2] ++ x + 3 (Copilot)

f [0, 1, 2] (Haskell)

 where f :: [Word64] -> [Word64]
 f x = x ++ f (map (+3) x)

x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ...

x = [0, 1, 2]

 (+3)
 [3, 4, 5]

 (+3)
 [6, 7, 8]
 ...

all operators are
lifted in Copilot

© 2011 Galois, Inc.

Stream Semantics
(Drop)

x .= [0, 1, 2] ++ x + 3

y .= drop 2 x

x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ...

y = 2, 3, 4, 5, 6, 7, 8, 9, 10 ...

© 2011 Galois, Inc.

Stream Semantics
(Drop)

x .= [0, 1, 2] ++ x + 3

y .= drop 2 x

x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ...

y = 2, 3, 4, 5, 6, 7, 8, 9, 10 ...

© 2011 Galois, Inc.

Sample Code Generated
(Incomplete)

/* engine.sample__shutoff_2 */
static void __r6() {
 bool __0 = true;
 bool __1 = shutoff;
 if (__0) {
 }
 engine.tmpSampleVal__shutoff_2 = __1;
}

/* engine.updateOutput__trigger */
static void __r0() {
 bool __0 = true;
 bool __1 = engine.tmpSampleVal__shutoff_2;
 bool __2 = ! __1;
 float __3 = 2.3F;
 uint64_t __4 = 0ULL;
 uint64_t __5 = engine.outputIndex__temps;
 uint64_t __6 = __4 + __5;
 uint64_t __7 = 4ULL;
 uint64_t __8 = __6 % __7;
 float __9 = engine.prophVal__temps[__8];
 float __10 = __3 + __9;
 uint64_t __11 = 2ULL;
 uint64_t __12 = __11 + __5;
 uint64_t __13 = __12 % __7;
 float __14 = engine.prophVal__temps[__13];
 bool __15 = __10 < __14;
 bool __16 = __2 && __15;
 bool __17 = ! __16;
 if (__0) {
 }
 engine.outputVal__trigger = __17;
}

state-update function
for trigger stream

external variable
sample function

engine :: Streams
engine = do
 ...
 trigger = (var overTempRise)
 ==> (extB shutoff 2)

© 2011 Galois, Inc.

Copilot Language Restrictions

Design goal: make memory usage constant and “obvious” to
the programmer

 No anonymous streams
• Compiler doesn’t have to worry about sharing

 No lazily-computed values
• E.g. x .= [0] + x + 1

 y .= drop 2 x

 Other restrictions (see paper)

 Upshot: “WYSIWYG memory usage”
• Memory constrained by number of streams

• Memory for each stream is essentially the LHS of ++

• Doesn’t include stack variables

© 2011 Galois, Inc.

Timing Info & Expression Counts
Period Phase Exprs Rule
------ ----- ----- ----
 3 0 18 engine.updateOutput__trigger
 3 0 14 engine.updateOutput__overTempRise
 3 0 3 engine.update__temps
 3 1 7 engine.output__temps
 3 1 2 engine.sample__temp_1
 3 2 6 engine.incrUpdateIndex__temps
 3 2 2 engine.sample__shutoff_2

 52

Hierarchical Expression Count

 Total Local Rule
 ------ ------ ----
 52 0 engine
 6 6 incrUpdateIndex__temps
 7 7 output__temps
 2 2 sample__shutoff_2
 2 2 sample__temp_1
 14 14 updateOutput__overTempRise
 18 18 updateOutput__trigger
 3 3 update__temps

Generated engine.c and engine.h
Moving engine.c and engine.h to ./ ...
Calling the C compiler ...
gcc ./engine.c -o ./engine -Wall

Timing
info

Expression
count

helps with
WCET analysis

© 2011 Galois, Inc.

engine :: Streams
engine = do
 -- external vars
 let temp = extF "temp" 1
 let shutoff = extB "shutoff" 2
 -- Copilot vars
 let temps = varF "temps"
 let overTemp = varB "overTemp"
 let trigger = varB "trigger"

 temps .= [0, 0, 0] ++ temp
 overTemp .= drop 2 temps > 2.3 + temps
 trigger .= overTemp ==> hutoff

initial “don’t care”
values

Example Copilot Specification

“If the temperature rises more than 2.3 degrees within 2 seconds, then the engine
has been shut off.” (period == 1 sec)

phases to
sample in

© 2011 Galois, Inc.

Usage
 compile spec “c-name” [opts] baseOpts
 interpret spec rounds [opts] baseOpts
 test rounds [opts] baseOpts

• quickChecking the compiler/interpreter

 verify filepath int
• SAT solving on the generated C program

 help (commands and options)
 [spec] (parser)

 Opts (incomplete list):
• C trigger functions

• Ad-hoc C code (library included for writing this)

• Hardware clock

• Verbosity

• GCC options

© 2011 Galois, Inc.

Runtime Monitoring: What's New?

 Not new:
 One-out-of-two systems
 Error-checking codes
 Distributed fault-tolerance
 Built-in test

 New(er) ideas:
 Domain-specific languages for monitoring
 High-assurance monitors
 SW as a system componentSW as a system component

Decompose monitoring and controlling

Common source
of faults

© 2011 Galois, Inc.

X

 Types: Int & Word (8, 16, 32, 64), Float, Double
 Each stream has a unique inferred type:

 Casting

 Implicit casting is a type-error

Won't compile

 Explicit casting guarantees:
 signs never lost (no Int --> Word casts)
 No overflow (no cast to a smaller width)

Types

inferredtypes

let x = varW64 “x”
let y = varW32 “y”
x .= y

let x = varB “x”
let y = varI32 “y”
x .= [True] ++ not x
y .= cast x + 4

let x = varW64 “x”

x .= [0, 1] ++ x + 3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

