
CoqPie: A new GUI for the COQ Theorem Prover
 Kenneth Roe The Johns Hopkins University

Motivation
Developing complex theorems using COQ is extremely
tedious

The design of CoqPIE is based on an informal analysis of pain
points in proof development.

(1) One often finds errors in the statement of a theorem while
 developing a proof. Changing the statement often requires
 the proof script to be updated
(2) Often it is useful to quickly review earlier goal/hypothesis
 states. Existing IDEs require the Coq prover itself to
 backup or move forward in a script. On a complex proof
 each step can take 30 seconds to backup or reevaluate.
(3) LTac--the scripting langauge for Coq has many holes. Many
 simple rules cannot be expressed
(4) Navigating to specific definition declarations can be difficult
 if there is a large amount of proof script code.

Overview of implementation
* Implemented using Python and Tk

* Parser developed for Coq syntax
 CoqPIE parses all source files
 Enables implementation of intelligent replay and tactics

* CoqPIE preprocesses Coq files.
 (1) All intermediate goals and hypotheses saved.
 (2) Data collected for an entire project and saved in a single .pp file
 (3) CoqPIE automatically updates data cache as edits are
 performed

* CoqPIE maintains a relationship between its AST representation
 and the source file text
 (1) AST used to create definition/theorem browser at the left
 (2) AST incrementally updated as the user makes edits

* User free to edit Coq source files using another editor. However,
 the .pp file will have to be regenerated which might be tedious

* CoqPIE implements intelligent replay and many editing tactics that
 use information in the AST

The shortfalls of CoqIDE and
Proof general
(1) Both based on the concept of giving control over the
 current position of CoqTop in the source �le
(2) This means that skimming a proof is tedious as this
 requires Coq to change its state
(3) Replay requires remembering the goals and hypotheses
 of the proof before editing. This often makes updating
 confusing

Dependency information
When a definition or lemma is edited, it can impact the validity of
other declarations that depend on it.

 * If the definition or the statement portion of the theorem is still
 valid, then later definitions can still be edited
 * CoqPIE automatically marks declarations that have been
 invalidated.
 * Intelligent replay can be used to fix the proof scripts of any
 proof that is marked “invalid”
 * One can use Coq to check proofs and definitions even when an
 earlier proof script is invalid.

 break break

http://www.cs.jhu.edu/~roe

Middle view shows
source code from the
selected �le

A tactic or de�nition
selected on the left is
highlighted in source �le

Details of the goal and
hypotheses right after
the selected tactic.

Check boxes can expand
or contract long goals
or hypotheses.

Di�erences between
before and after tactic
application (or between
a hypothesis and a goal
can be marked in yellow).

Search bar allows you
to quickly �nd de�nitions
and theorems by name.

Replay
Often the process of developing a theorem reveals errors
in the statement of a theorem. When that statement is changed,
the script needs to be adapted. Changes may involve the following:

(1) Removing proofs for subgoals that vanish
(2) Creating stubs for new subgoals
 Often the error discovered in a theorem declaration is a missing
 antecedant
(3) Updating hypothesis names in tactics.
 Adding an antecedant may shift down hypothesis numbers. For
 example, “inversion H10” may need to become “inversion H11”

Replay works by stepping through a script. At each step, both the AST
representation of the old goal/hypotheses and the new goal/hypotheses
is available for analysis. This enables CoqPIE to automatically �gure out
how hypothesis names have shifted.

The process is semi-automatic. User intervention may be needed to
prove a newly added subgoal or to update the expression inside an “assert”

Di�erence highlighting
Because a goal can be very complex. At each step di�erences are
highlighted in yellow to show what changed.

Project Status
A prototype of the Coq parser and a tool
that can read and display the de�nitions
in a Coq �le is complete. The tool has
facilities to preprocess the scripts and
save intermediate data. Work is now
being done to allow editing of the
proof scripts in CoqPIE. It is anticipated
that by Summer 2015 a functional
version of the tool will be available.

Mitigating Coq performance issues
One of the biggest sources of productivity problems is the speed of the
Coq theorem prover. Complex proofs can take hours (or even days)
to fully verify. We do not make Coq faster but we do minimize the need
for Coq to do work

(1) All intermediate goals are cached. Simply reviewing a proof does
 not invoke Coq.
(2) CoqPIE provides tactics to break up large proofs into lemmas--this
 often improves the performance of Coq
(3) CoqPIE will replace a proof script with admit if you are simply jumping
 over an entire theorem to get to something much later

Browsable list of Coq
source �les and the
declarations they contain.
Theorem declarations
can be opened to reveal
proof steps in the
hierarchy.

Editor status--warns when
a long computation is in
progress.

