Destiny

Computer aided bottom up code review

Frank Rimlinger NSA

frankrimlinger@mac.com

Problem statement

07 tap three times —| Kansas
Mg despair
Input

state state transformation ——»
space

Starting with a fuzzy diagram such as this, can we pass to a
commutative diagram in which all four maps are well
defined and the original “intent” 1s preserved?

Mission Critical Software

Destiny addresses the problem of software assurance
with a rngorous modeling process that complements
testing and model checking approaches.

The strength of Destiny analysis 1s that of mathematical
proof. No approximations or simplifications of code
behavior are introduced. Single threaded analysis only.

Serves as intermediary between the analyst, the source
code, and the ACL?2 theorem-prover.

Process detects errors and synthesizes a precise notion of
“good outcomes” for each analyzed method.

Procedure

Destiny operates on Java code, leveraging an
important Java feature: the concise description of
the state of the computer, as modeled by the JVM
(Java Virtual Machine).

Starting with a primitive method M, Destiny
ouides the analyst to a precise description of the

“good” outcomes of M, rendered as far as possible
1in terms of source code level constructs.

Destiny forbids other methods dependent on M
from passing “bad” states to M.

Process repeats as necessary to specity good
outcomes and forbid bad input until all layers of
software have been described.

Comprehension requires context

Destiny provides the state of the computer at any
execution point within a method via a point-and-
click navigable interactive display.

The state 1s a concise description of the heap, the
stack of method frames, and the static area.

Source code level names are preserved.

The 1nteractive display also provides the
constraints on input required to achieve the
displayed state.

Given all this information, the analyst then
chooses between three possibilities: a good
outcome, a bad outcome, or an error in the code.

Analyst as oracle

The analyst role as oracle 1s essential 1n any
verification process.

Proot-by-construction: front-loaded analyst etfort
to set up a mechanmism that will generate the
correct code. Top-down.

Destiny: back-loaded analyst effort to compare
ordinary developer documentation against
descriptions of state generated by the tool.
Bottom-up.

The two different points of view complement each
other, and may potentially be used together to help
detect oracle error.

Analyst as pioneer

There 1s an organic cycle to computer-aided tool
development. Each development cycle of Destiny:

introduces new features to relieve repetitive
analyst tasks,

increases the level of source code complexity that
the tool can successfully handle, and

produces incremental evidence of tool viability for
management.

The role of the analyst as pioneer 1n the tool
development cycle 1s as eritical as the traditional
role as oracle in the verification process.

Example of Destiny process

e Destiny presents a method as a series of

decision points, where the analyst decides
what outcome to work towards and verifies

that things “make sense”.

* To see this process 1n action, consider the
Destiny implementation, written in java, of
the typically native method
java.lang.reflect. Array.set()

public sLatic woid seDbpect archy,int index, Dhject valueg)
thiraws lllegal ArgumentException ArrayindexOut OfBoundsException|

Class compornentClass=anray. getllass 0, getlomgoneni Typeal;
ificomponentClads = =nullf

§ Array does not represent an anray class

thraw miew IlagalArgumentExceptionll;

I
iflcomponentClass.isPrimitiveiH
Ifiwalue instanceof java.lang. Boolean)
sertBogleaniarray, index, [{Bodleanvaluel, booleanvalwell),
b

else ifivalue instanceof java.lang. Character
setChar(array, index, (Charactarkaluel.charvaluedl
I
else iflvalue instanceof java.lang. Bytel
setBytelarmay, index, ((BytelvaluelbyteValuel),;

else ifivalue instanceal ava.lang. Shortl
setShartlamray, index, (ShortivaluelshartValuedl};

i

else ifivalue instanceol java.lang. Integpen)
setintlarray, index, (Integerivaluelintvaluelll;

i

else ifivalue instanceof java.lang, Longi
setLonglarray, ifdex, [Ilamghaleelangvalusll;

[

glse ifivalue instanceof java.lang.Float
setFloatiarray, index, (Floatralve). Noarvalwe);

I

glse ifivalue instanceof java.lang. Doublel
satDpublalarmay, index, ((Doublevalus) doublevaluell;

I

elsef
1§ A primitive array reguines a primitive value, $0 no can do
throw mew [legalArgumentExceptiond)

b

i
alse]

§F O, we must be s1oring an objedct

A Check for assignment compatibility

if{!componentClass.isAssignableFromivalue.getClass{H
theow miew (egaldrgumentException{):

I

i Checl array bounds
ArrayExceptionsaray.index).

I assign the abject
Destimy_Obgect. setArrayObjectval uetarmay, index, valuel;

After some 1ssues involving the
calls to getClass(),
getComponentType() and
15Primitrve() have been resolved,
Destiny provides the analyst with a
choice. Both these choices lead to
good outcomes, so two separate
“abstractions” are bomn at this point.

R

¥ & javalangreflect.Array. setl java.lang.Object; IL java.lang. Ob jeet)V
¥ [B or
¥ i a
¥ B ard
YE=
* [B] isPrimitivellass
Bo
F [l SLIST
b == setM 9T 0l oad_eomponentClass
v E o
v [§ and
¥ [MOT
¥ i =
b [B isDrimitiveclass
o
F [BR SLIST
B == sebil3alond_valws

public sLatic woid seDbpect archy,int index, Dhject valueg)

thiraves llegalArgumentException Arrayd nd exOut OfBoundsException{

Class componentillass=anmay, petllass 0. getlompanen [Typal,

ificomponentClads = =nullf
§ Array does not represent an anray class
threrw miw Il pgal ArgumentExceptiand)

I
iflcomponentClass.isPrimitiveiH
Ifiwalue instanceof java.lang. Boolean)
sertBogleaniarray, index, [{Bodleanvaluel, booleanvalwell),
b
else ifivalue instanceof java.lang. Character
setCharlarray, index, (Characterivalug).charvalueil;

I
else iflvalue instanceof java.lang. Bytel
setBytelarmay, index, ((BytelvaluelbyteValuel),;

else ifivalue instanceal ava.lang. Shortl
setShartlamray, index, (ShortivaluelshartValuedl};

i

else ifivalue instanceol java.lang. Integpen)
setintlarray, index, (Integerivaluelintvaluelll;

i

else ifivalue instanceof java.lang Longh
setLonglarray, ifmdex, (Il rg ksl wel langvaluel),

[

glse ifivalue instanceof java.lang.Float
sarFloarfanay, indes, (Fhoanrealise), Noarval wel;

I

glse ifivalue instanceof java.lang. Doublel
satDoublelarmay, index, ((Doubledvalue).doublevaluall;

I

elsef

1§ A primitive array reguines a primitive value, $0 no can do

therowe mew egaldrgumentException{)
b
i
alse]
§F O, we must be s1oring an objedct
A Check for assignment compatibility
if{!componentClass.isAssignableFromivalue.getClass{H
theaw new |llegalArgumentExceptiond)
I

i Checl array bounds
ArrayExceptionsaray.index)

I assign the abject
Destimy_Obgect. setArrayObjectval uetarray, index, valuel.

Choosing the primitive branch leads
to eight new abstractions
corresponding to the eight primitive
types. Choosing the other branch
leads to the “assignment
compatibility ” decision. We avoid
the “bad outcome” which will throw
an exception, so no new abstractions
are born in the non-primitive case.

¥ o jova.lang reflect Array selLiava.lang Ob ject IL jova. lang Db jec t W
v [E ar
¥ [§ o
* B and
T [0 HOT
v ® =
F [Superciass
o
F [0 sLIST
¥ o set#lDbcaload_array
v n o
¥ [§ and
¥ o=
* B sSupercioss
Bo
* (i@ sLsT
F e seti#l0Enew

public sLatic woid seDbpect archy,int index, Dhject valueg)
thiraws lllegal ArgumentException ArrayindexOut OfBoundsException|

Class compornentClass=anray. getllass 0, getlomgoneni Typeal;
ificomponentClads = =nullf

§ Array does not represent an anray class

thraw miew IlagalArgumentExceptionll;

I
iflcomponentClass.isPrimitiveiH
Ifiwalue instanceof java.lang. Boolean)
sartBogleaniaray, index, ({Boal Feadug), booleanValisell);

b
else ifivalue instanceof java.lang. Character
setChar(array, index, (Charactarkaluel.charvaluedl
I
else iflvalue instanceof java.lang. Bytel
setBytelarmay, index, ((BytelvaluelbyteValuel),;

else ifivalue instanceal ava.lang. Shortl
setShartlamray, index, (ShortivaluelshartValuedl};

i

else ifivalue instanceol java.lang. Integpen)
setintlarray, index, (Integerivaluelintvaluelll;

i

else ifivalue instanceof java.lang, Longi
setLonglarray, ifdex, [Ilamghaleelangvalusll;

[

glse ifivalue instanceof java.lang.Float
sarFloarfanay, indes, (Fhoanrealise), Noarval wel;

I

glse ifivalue instanceof java.lang. Doublel
satDpublalarmay, index, ((Doublevalus) doublevaluell;

I

elsef
1§ A primitive array reguines a primitive value, $0 no can do
throw mew [legalArgumentExceptiond)

b

i
alse]

§F O, we must be s1oring an objedct

A Check for assignment compatibility

if{!componentClass.isAssignableFromivalue.getClass{H
thranw riew INegalArgumentException)

I

i Checl array bounds
ArrayExceptionsaray.index).

I assign the abject
Destimy_Obgect. setArrayObjectval uetarmay, index, valuel;

And it’s a wrap! Having made all
these decisions, the method simplifies
down to the desired good outcome.
All this information is stored
persistently as an “‘abstraction rule™
for java.lang.reflect. Array.set().

¥ = java.lang.reflect.frray.setljava.lang.Object,IL java.lang. Object, v
¥ [8 ucon (3 args)
¥ [ED slist
¥ [l heapmodel_B&4 (1 iterm + abstract heap)
¥ & Object at unresolved location
¥ [2] unresolved_location
» @ array_l
¥ [2] subAddress
w N index_1
F [value_ 1
B v_H
B v_rH
] no returnvalue
» [H statmodel (abstract stat only)
O notused
inF
» [§) gstack

java.lang.reflect. Array . set(ljava.lang. Object ILjava.lang.
Object; VW

sets array [indexl=value

Assumptions:
array calls
java.lang. Object getClass()Ljava.lang.Class;
array.getClass does not throw invocation exception
getClassfloat, aray case
componentClass is not nulll
componentClass calls java.lang.Class.isPnmitive()Z
componentClass.isPrimtive()2 does not throw invocation
exception
componentClass is not primitive
value calls
java.lang. Object.getClass()Ljava.lang.Class;
getClass float for value, Array case
componentClass calls
java.lang.Class.isAssignableFrom(Ljavalang.Class;)Z
componentClass.isAssignableFrom does not throw
invocation exception
componentClass is assignable from value
value getClass does not throw invocation exception
array exceptions float for value

The analyst also makes
a brief notation for
each decision made,
and these form a
readable “transcript” of
the rule. Although not
precise, these notes
preserve the thought
process involved 1n the
abstraction.

Observations

The analyst-as-oracle perceives that the pictures line up with the
source code in a meaningful way.

The oracle concludes, assuming all the rest of the abstractions for set()
simplify correctly to the desired outcome, that this method 1s correct.

The analyst in the role of pioneer would have many complaints, such
as:

— Some sort of template mechanism is required to eliminate the
tedium of working through a bunch of almost identical cases

— The notes that the analyst makes at each decision point should
really be automatically generated by an synthetic language process.
This would eliminate a very real source of confusion caused by
inaccurate notations.

Feedback ultimately drives a new generation of the tool.
Over time, the tool becomes more and more powerful.

Each generation requires more $$$ than the last to successfully pursue,
so the effort is always to find the next “killer feature.”

Special considerations for loops

Destiny automatically handles the translation of loops 1n
source code into a potentially hierarchical system of tail
recursive functions.

Destiny cannot reason inductively, but 1t does guide the
analyst to form conjectures and axioms. These artifacts
are parsed into the ACL2 language, where a theorem-
prover specialist can prove the conjectures, given the
axioms.

On the Destiny side, the conjectures are assumed to be true
(unless proven otherwise), and the axioms become part of
the hypothesis set of a given good outcome.

Destiny hides as much detail of the “Destiny JVM
implementation™ as possible from ACL2, allowing ACL2
to concentrate on the fundamental logic of the situation.

Loop code example

e Destiny implements java.lang. System.arraycopy()
as java code.

 This method does a lot of error checking, taking
1nto account widening conventions for primitive
type arrays, and assignment 1ssues for arrays of
references. Moreover, the method also does range
checking, and supports a butfered copy in the
event of source/destination overlap.

* For this example, we concentrate on the loop
inside arraycopy() that performs the actual copy of
data from one array to the other.

for (int §j = 0; j < length; j++){
Object current8rcValue=Array.get(socurceArray, currentsrc);
// item lewvel compatibility for reference type copy
if({!primitiveCopyFlag){
if{!destComponentClass.isAssignableFrom{current3rcValue.getClass())){
//reference types don't match
throw new ArrayStoreBException();
}
i

Array.set(dest, currentdest,currentS8rcValue);++currentsrc; ++currentdest;

}

Destiny presents the

¥ [E] defun
» [arraycopy (18 args) decision points inside the
v B if (3 args) loop as in the first
> [arraycopy-guard
v B if (3 args) example, but now the
vE- results of these decisions
-‘ E j_q- 1Y
> 1) length_7 become part of the “loop
> [arraycopy (I8 args) guard”, which must be
> [E outputValues (18 args)]
») arraycopy-partial satisfied each pass

through the loop.

¥ [8 and (4 args)
>] dest.Array_Type_Marker is B at 4.1
> get float for srcarray, case B at 4.
> [»] primitivecopyflag is true at 4.17.06,]
v Esei’ float, primitive case at 4.17.06,5
[frank
> £ nh
| E} h
> [stack

v arraycopy loop guard as axiom
v [8) and (4 args)
b [»]dest.Array_Type_Marker is B at 4.
>] get float for srcarray, case B at 4
> El primitivecopytlag is true at 4.17.06,
v [»] set float, primitive case at 4.17.06,
1 frank
v @ o+
> @ v-nh_l
4
> [E) pushH (3 args)
v [E pushFrame
v [B] storeCatl (3 args)
> @ currentsrcvalue_5
13
> [E) storeCatl (3 args)
> [® popFrame

Each variable maintains a
history of its past values. Input
values to the method become
primitive symbols in the ACL2
logic. By “lifting” the loop
guard to these primitive
symbols, an axiom 1s
automatically generated for the
ACL2 logic. Therefore, to the
extent that (an appropriate
transformation of) the variables
1s loop invariant, ACL2 need
not be cognizant of the details
of the internal structure of the
Destiny JVM implementation.

Observations about loops

Once a conjecture 15 made, Destiny simplifies the methods based on the
assumption that the conjecture is in fact true. A replay facility allows the
analyst to recover from bad conjectures, saving whatever work 1s salvageable.

The abstraction of arraycopy() does not actually assert that this methods copies
the data from one array to another. Such a conjpecture will be generated by a
method which calls arraycopy(). Calling method variables may access the
heap upon the return from arraycopy(), whence conjectures mvolving such
variables are mdirectly conjectures about arraycopy().

To assist in generating such conjectures, Destiny automatically specializes the
generic ACL2 theory for arraycopy() based on the mput values suppled by the
caller. The specialized theory then augments the ACL2 theory of the caller.

By this means, the ACL2 effort achieves re-usabihity.

An important conjecture about a loop 1s that it terminates, given whatever
assumptions on the mput are reasonable. Of course, the question of
termination 18 logically undecidable, and in practice Destiny is of limited help
in determining such assumptions. However, Destiny does guide the user to the
statement of the appropnate termnation conjecture.

Input Java
Byte Code

Build control
flow graph

—

Collapse
innermost loops

e

Blow up and
excise outermost
fﬂuE.';
Stratify all

acyclic
subgraphs

Feed strata into
Destiny Process.

Automated Code Subdivision Process

Collapse

-

recursive
function

Blow Up

alpha

omega

OO - OO £

From strata to good outcomes

* The code subdivision process emits “strata”, which are tiny
bits of control flow with few or no branch points.

* The code specification process takes as input genuine Java
methods, (or minimal co-recursive sets of methods). At
the byte code level, even the simplest methods contain
many branches, whence the control flow of a method
contains many strata.

* The Destiny interactive tool allows the user to efficiently
and transparently navigate through the strata of a method
and locate the “good paths™ that lead to the “good
outcomes.”

Strategies to manage complexity

The rewriter automatically attempts a breadth-first top-
down pattern matching strategy. All expressions are
simplified at a given height, relative to the stratification.
Then the next height 1s interpreted and the process repeats.

The “tree viewer allows a user to navigate any expression
representing control flow and/or state transition in a top-
down manner, used to target commands moderating the
creation of the specification of a method.

The “graph viewer” allows a user to understand very local
behavior of control flow, now used mostly for debugging
purposes.

The “3D graph viewer”, under development, will allow the
user to orchestrate rewriting strategies that complement,
modify, or generalize the automatic breadth-first rewriting
strategy.

On-board technologies

Destiny technology (loops and strata subdivision)
Breadth-first top-down conditional rewriter
Full-blown JVM model

2d and 3d interactive rendering of control flow
Interactive graphic layer for formula manipulation
Interactive control layer for specification generation
Recursive function generation

ACL2 theory and specialization generation
Persistent storage for rule base and specifications
Playback facility for regression testing

Lifetime analysis of heap objects

Status, goals and philosophy

Project 1s currently demonstrating “first operational
capability”, applied to actual customer code.

Goal 1s always more and better automation.

Rule base oriented strategies allow for great flexibility and
experimentation.

Visualization enables debugging capability and also the
conceptualization of new techniques.

Always on the look-out for opportunities to integrate
established technologies, especially model-checking and
VCG's.

Who are we?

Frank Rimlinger, NSA, project manager and chief
architect.

Jon Barrilleaux, JMB Oakland CA, visualization senior
scientist.

Warren Hunt Jr, Prof. of Computer Science at University
of TX, consultant

Robert Krug, University of TX staff member, formal
methods support

Jason Roberts, JMB visualization support (currently
unfunded)

Marc Durant, JMB algorithmic and technical support

	

