
safety

Cost-Effective^Certification of

Software-Intensive Systems

Prof. Nancy Leveson

MIT

• Accident: An undesired and unplanned event that results

in a loss (including death and injury, property damage,

environmental pollution, etc.)

• Safety: Freedom from accidents

Why are our Efforts Often Not

Cost-Effective?

• Efforts superficial, isolated, or misdirected

• Safety efforts start too late

• Focus on compliance, not building in safety

• Inappropriate techniques for systems built today

• Focus efforts only on technical components of system

• Systems assumed to be static through lifetime

• Success can lead to failure (risk perception)

• Limited learning from events

Safety Regulation Approaches

• Prescriptive

– Product

• Specific design features (e.g., electrical codes)

• General design features (e.g., fail-safe, protection system)

– Process: process to be followed in

• Designing and implementing the system

• Assuring safety

• Goal or Performance-Based:

– Set a goal and developer decides how to achieve it.

Mil-STD-882: Defense System Safety

• Purpose:

 “Provide uniform requirements for developing and

implementing a system safety program of sufficient

comprehensiveness to identify the hazards of a system

and to impose design requirements and management

controls to prevent mishaps.”

• Applies to entire lifecycle (including operations)

• Specifies what but not how

• Tailorable: written as a set of tasks that may or may not

be required

MIL-STD-882

• Standard tells what to do, but not how.

• Developers must create a System Safety Plan, which is

approved by the customer.

• Tailorable: Set of tasks that can be levied, depending on

type of system being developed.

 100: Program Management and Control

 200: Design and Integration (Hazard ID and analysis)

 300: Design Evaluation

 400: Compliance and Verification

MIT-STD-882 Objectives

The safety program shall specify a systematic approach to

make sure that:

• Safety, consistent with mission requirements, is designed into

the system in a timely, cost-effective manner.

• Hazards associated with each system are identified, tracked,

evaluated, and eliminated or controlled throughout the entire

life-cycle of a system.

• Historical safety data, including lessons learned from other

systems, are considered and used.

• Actions taken to eliminate or control hazards are documented

and rigorously reviewed.

MIL-STD-882 Objectives (2)

• Retrofit actions required to improve safety are minimized

through the timely inclusion of safety features during research,

technology development for, and acquisition of a system.

• Changes in design, configuration, or mission requirements are

accomplished in a manner that does not introduce new hazards

nor reduce control of existing ones (“management of change”).

• “Lessons learned” are documented and changes made to

development and operational processes.

Argument-Based Safety Cases

• Nimrod accident investigation placed primary

responsibility for accident on use of safety cases.

• Almost no evidence these are effective.

• In fact, most of the ones I have seen in the safety

literature are incorrect.

Argument-Based Safety Cases

What is going on here?

– There is always a way to argue that something is safe,

whether it is or not. Always possible to produce evidence

that something is safe.

– Confirmation Bias:

• People will focus on and interpret evidence in a way that

confirms the goal they have set for themselves.

• If the goal is to prove the system is safe, they will focus on

the evidence that shows it is safe and create an argument for

safety.

• The solution is not to use an argument for safety as the

basis for certifying safety.

It’s still hungry … and I’ve been stuffing worms into it all day.

Assumption:

• Accidents are caused by system component failure(s)

• Safety is increased by increasing the reliability of the individual

system components. If components do not fail, then accidents

will not occur.

Assumption:

• Software can be treated just like hardware (with perhaps a few

minor changes).

• Highly reliable software is safe.

“It’s never what we don’t know that stops us;

it’s what we do know that just ain’t so”

Accident with No Component Failures

Types of Accidents

• Component Failure Accidents

– Single or multiple component failures

– Usually assume random failure

• Component Interaction Accidents

– Arise in interactions among components

– Related to interactive complexity and tight coupling

– Exacerbated by introduction of computers and software

Safety = Reliability

• Safety and reliability are NOT the same

– Sometimes increasing one can even decrease the other.

– Making all the components highly reliable will have no
impact on component interaction accidents.

• For relatively simple, electro-mechanical systems with
primarily component failure accidents, reliability engineering
can increase safety.

• But this is untrue for complex, software-intensive socio-
technical systems.

Software-Related Accidents

• Are usually caused by flawed requirements

– Incomplete or wrong assumptions about operation of

controlled system or required operation of computer

– Unhandled controlled-system states and environmental

conditions

• Merely trying to get the software “correct” or to make it

reliable will not make it safer under these conditions.

Software-Related Accidents (2)

• Software may be highly reliable and “correct” and still be

unsafe:

– Correctly implements requirements but specified behavior

unsafe from a system perspective.

– Requirements do not specify some particular behavior

required for system safety (incomplete)

– Software has unintended (and unsafe) behavior beyond

what is specified in requirements.

Engineering a Safer World (MIT Press, fall 2011)

 http://sunnyday.mit.edu/safer-world

• Expanded model of accident causality based on system

theory (not reliability theory)

• Treats safety as a dynamic control problem

• Handles software, hardware, human errors, management,

culture …

• Overall goal is to enforce constraints on system (and

software) behavior through appropriate design, analysis,

operations, and management.

http://sunnyday.mit.edu/safer-world
http://sunnyday.mit.edu/safer-world
http://sunnyday.mit.edu/safer-world

STAMP (2)

• Systems can be viewed as hierarchical control structures

– Systems are viewed as interrelated components kept in a

state of dynamic equilibrium by feedback loops of

information and control

– Controllers imposes constraints upon the activity at a lower

level of the hierarchy: safety constraints

• A change in emphasis:

 “prevent failures”

 ↓

 “enforce safety constraints on system behavior”

Example

Safety

Control

Structure

STAMP: System’s Theoretic Accident

 Model and Processes (1)

• Views safety as a dynamic control problem rather than a

component failure problem, e.g.,

– MPL software did not adequately control descent speed

– O-ring did not control release of hot gases from Shuttle field joint

– Public health system did not adequately control contamination of

 the milk supply with melamine

– Financial system did not adequately control the use of financial

instruments

• Events are the result of the inadequate control

– Result from lack of enforcement of safety constraints

– Need to examine larger process and not just event chain

Accidents occur when model of

process is inconsistent with real

state of process and controller

provides inadequate control

actions

 Controlled Process

Model of

Process

Control

Actions
Feedback

Controller

Control processes operate

between levels of control

Feedback channels are critical

 -- Design

 -- Operation

5 Missing or wrong

communication with another

controller

STPA (System Theoretic Process

Analysis)

• Starts from a model of the functional control structure

1. Identifies the behavioral safety constraints that must be enforced

on the system and component behavior in order to prevent

accidents (i.e., the safety requirements and constraints)

2. Identifies potential causes of violation of the requirements

(scenarios leading to unsafe system behavior).

• Has been successfully used on enormously complex systems

and found many more potential problems than fault trees.

• Supports safety-guided design where intertwine design

decisions with analysis to assist in decision making.

Uses for STAMP

• Create new, more powerful hazard analysis techniques (STPA)

• Safety-driven design (physical, operational, organizational)

• More comprehensive accident/incident investigation and root

cause analysis

• Organizational and cultural risk analysis

– Identifying physical and project risks

– Defining safety metrics and performance audits

– Designing and evaluating potential policy and structural

improvements

– Identifying leading indicators of increasing risk

• New holistic approaches to security

Technical
• Safety analysis of new missile defense system (MDA)

• Safety-driven design of new JPL outer planets explorer

• Safety analysis of the JAXA HTV (unmanned cargo spacecraft
to ISS)

• Incorporating risk into early trade studies (NASA Constellation)

• Orion (Space Shuttle replacement)

• Safety of maglev trains (Japan Central Railway)

• NextGen (for NASA, just starting)

• Accident/incident analysis (aircraft, petrochemical plants, air
traffic control, railway accident, …)

• Medical devices (artificial pancreas, proton therapy device)

• Automotive (adaptive cruise control)

Does it work? Is it practical?

• Analysis of the management structure of the space shuttle
program (post-Columbia)

• Risk management in the development of NASA’s new manned
space program (Constellation)

• NASA Mission control ─ re-planning and changing mission control
procedures safely

• Food safety

• Safety in pharmaceutical drug development

• Risk analysis of outpatient GI surgery at Beth Israel Deaconess
Hospital

• Analysis and prevention of corporate fraud

Social and Managerial

Does it work? Is it practical?

Evaluation (1)

• Performed a non-advocate risk assessment for inadvertent launch

on new BMDS

• Deployment and testing of BMDS held up for 6 months because so

many scenarios identified for inadvertent launch. In many of these

scenarios:

– All components were operating exactly as intended

• E.g., missing cases in software, obscure timing interactions

• Could not be found by fault trees or other standard techniques

– Complexity of component interactions led to unanticipated

system behavior

– STPA also identified component failures that could cause

inadvertent launch (most analysis techniques consider only

these failure events)

• Now being used proactively as changes made to system

Evaluation (2)

• Joint research project between MIT and JAXA to

determine feasibility and usefulness of STPA for JAXA

projects

• Comparison between STPA and FTA for HTV

• Problems identified?

• Resources required?

• ISS component failures
• Crew mistakes in operation
• Crew process model inconsistent

• Activation missing/inappropriate
• Activation delayed

• HTV component failures
• HTV state changes over time
• Out-of-range radio disturbance
• Physical disturbance

• t, x feedback missing/inadequate

• t, x feedback delayed

• t, x feedback incorrect

• Flight Mode feedback missing/inadequate

• Flight Mode feedback incorrect

• Visual Monitoring missing/inadequate

• Wrong information/directive from JAXA/NASA GS

Identified by both (STPA and FTA)
Identified by STPA only

Comparison between STPA and FTA

Conclusions

• Safety is a system problem, not a software (component)

problem.

– Cannot certify software “safety” in isolation (software by

itself is not safe or unsafe)

• The problem is in the requirements (externally visible

behavior)

• Software that is “correct” and reliable (satisfies its

specification) is not necessarily safe.

• Safety must be built in, cannot add later or certify it in

Conclusions

• Traditional safety engineering techniques are based on

assumptions no longer true for the systems we are building

• Trying to add software and human error to traditional accident

models and techniques is hopeless

• A new, more sophisticated causality model is needed to

handle the new causes of accidents and the complexity in our

modern systems

• Cannot certify software independent from a particular system

(safety is a system property, not a component property)

– Safety is an emergent system property, not a component

property

