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in AWS
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Cryptography Development Purposes

• Service-Independent Protocols
• e.g. Signature Version 4

• Implementation of Services
• e.g. Key Management Service

• Custom Hardware
• E.g. Nitro

• Standards
• e.g. post-quantum, IoT

• Reusable Tools and Components
• e.g. Encryption SDK
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Ensuring the Security of AWS Cryptography

• Best practices and expert review
• Mathematical analysis and security proofs
• Formal verification
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Formal Verification of Cryptography
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How to Formally Verify Cryptography

• Machine-checked security proof
• Provides additional assurance that proof is correct

• Ensures that system has some security property
• Carefully state capability of adversary
• Various models/approaches

• Symbolic: primitives are perfect, ensure no “bad paths”
• Computational: complexity-theoretic reduction
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Why Not Stop at Paper Proofs?

• Sometimes paper proofs are good enough
• Machine-checked proof can be expensive

• Significant proof flaws in the past
• GCM: Error in lemma that bounds probability of collision
• BCTV14 (Zcash): Error in lemma allowed counterfeiting
• OCB2: Assumption applied incorrectly---completely insecure

• Machine-checked proofs can prevent expensive flaws
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Example: Hybrid Key Encapsulation
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Key Encapsulation Mechanisms

• Use public key cryptography to establish session keys
• E.g. Diffie-Hellman, RSA key transport

Initiator Responder
(pk, sk) <- KeyGen()

pk

(k, c) <- Encaps(pk)
c

k <- Decaps(sk, c)
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Hybrid Key Encapsulation

• Combine Multiple KEMs and achieve security of “strongest” one
• Strength of KEM depends on adversary
• Can combine classical and post-quantum KEM

• Concatenation KDF (CtKDF)
• (k1, k2, …, kn) produced by independent KEMs
• k <- HKDF(k1 || k2 || … || kn, label, context, length)
• context includes all public information exchanged
• Used in draft ETSI, NIST, and IETF standards.
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Hybrid KEM Security

• IND-CPA security
• Attacker sees public information in KEM exchanges
• Attacker cannot distinguish resulting key from random

• CtKDF is IND-CPA secure assuming:
• At least one underlying KEM is IND-CPA secure
• HKDF is a secure KDF 

• Proof is ”obvious”, but there are areas of concern
• Is concatenation sufficient, or do we need to partition?
• What information needs to go in context?
• What distribution does HKDF need to extract? Is salt necessary?
• Precise bound on adversary distinguishing key?
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Formally Verified Hybrid KEM Security

• Machine-checked proof in computational model
• Complexity-theoretic reduction

• Games define security definitions and assumptions
• Proof is sequence of relations (e.g. equivalence) on pairs of games
• Attacker can defeat KEM -> hardness assumption violated

• Proofs completed in Foundational Cryptography Framework (FCF)
• Library for Coq proof assistant, inspired by EasyCrypt
• Adds probability, relational reasoning, crypto definitions/arguments
• Gives concrete numeric bounds on adversary success probability
• No built-in complexity classes---allows quantum adversary/reduction
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CtKDF Security Proofs

• IND-CPA in the standard model assuming:
• At least one underlying KEM is IND-CPA secure
• HKDF is secure KDF when extracting from a particular source:

• X || Y || Z where Y is drawn from distribution of secure KEM, X and Z are anything
• Source-specific assumption needed because KDF is not salted

• IND-CPA in the random oracle model assuming:
• At least one underlying KEM is OW-CPA secure
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Example: Signature Version 4
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Signature Version 4 (SigV4)

• Used to authenticate all external AWS requests
• Signing key is derived from long-term secret, 

date, region, service 
• Prevents exposure of long-term secret
• Reduces impact of exposure of short-term, local 

secrets

Date

Region

Service

Long-term secret

HMAC

HMAC

HMAC
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SigV4 Security Proof

• Goal: SigV4 is a secure MAC even when “unrelated” keys are compromised
• Stronger: SigV4 is a PRF even when “unrelated” keys are compromised

• PRF: Pseudorandom Function---signatures appear random
• Universal Composability style: adversary cannot distinguish real/ideal

• Real SigV4 functionality holds root secret
• Ideal functionality returns random values for all new signatures
• UC style is convenient for modeling compromise of secrets

• Adversary may (in any order, and any number of times)
• Compromise a derived secret
• Request a signature under an uncompromisable derived secret



© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

UC-style Proof Mechanization in Quivela

• FCF is not well-suited for UC-style proofs
• Quivela: library for Coq proof assistant, in development

• Earlier prototype: https://github.com/awslabs/quivela
• Checks UC-style security proofs

• Functionalities defined in OO style with classes and objects
• Objects can invoke methods on other objects

• Axiomatic semantics determines program behavior
• Program logic for determining the behavior of single execution
• Relational program logic for relating pairs of executions

• Semantics requires all programs are PPT, ignores negligible outcomes

https://github.com/awslabs/quivela
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Mechanized SigV4 Proof in Quivela

• Iterated PRF -> PRF on “disjoint” lists
• “disjoint”: no list is strict prefix of the other
• By induction on the max size of the list

• SigV4 Security
• Main result: tags for uncompromisable keys are indistinguishable from 

random (chosen by RF)
• Proof ensures that PRF is only called on “disjoint” lists
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Summary
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Summary

• AWS uses formal verification to increase assurance of security
• Cryptographic algorithms/protocols are verified via mechanized proof
• Using existing tools: EasyCrypt, FCF
• Developing new tools: Quivela
• See also: KMS proof in EasyCrypt (https://eprint.iacr.org/2019/1042.pdf) 
• In case you have more questions: apetcher@amazon.com

https://eprint.iacr.org/2019/1042.pdf
mailto:apetcher@amazon.com

