
Cryptol:
A Domain-Specific Language for
Cryptographic Service Providers

John Launchbury, Jeff Lewis, Thomas Nordin
Galois Connections Inc.

Plan for this Talk

 Why domain-specific languages?
 Domain analysis for crypto-algorithms
 Primitive components of Cryptol
 Intrinsic control structures
 Examples
 Mode specifications

Tension

 Domain-specific languages attempt to
bridge this semantic gap

 Programs written in domain-specific terms

Programming
Language
Concepts

Application
Concepts

tension

Domain-Specific Languages

 Classic examples
 Spreadsheets

 Accountancy concepts and notations

 LEX, YACC
 Use BNF descriptions of grammars

 Value of DSLs
 Design-level programming
 Huge productivity increase
 Major flexibility in evolvability
 Natural maintenance of design documents
 Broadening the programmer base
 Multiple use: code, test generation, analysis

Where do DSLs come from?

 Existing domain notations
 Textual
 Mathematical
 Graphical
 Gestural, etc.

 Semantics must be precise
 Prototype interpretation must match compiled

interpretation must match testing interpretation etc.
 Source level reasoning

 DSL programmers may not understand traditional programming

How do domain
experts talks to

each other?

Crypto-algorithm domain analysis

 Application concepts
 Data comes in

 Bits
 Bit-collections (words)
 Word-collections, etc.

 Multiple views of data
 Equational definitions
 Bounded iteration
 Feedback circuits
 Parameterized definitions

Cryptol

Domain-specific
language for

cryptoalgorithms

Data in Cryptol

 The smallest elements: Bits
 Everything else is a matrix (a parameterized collection)

[False True False True False False True]

0x4A

[0x3F 0x02 0x41 0xD8]

[[1 2 3 4] [5 6 7 8]]

[1 .. 10]

7 single bits

7 (or more) bits 4 elements, each
8 (or more) bits

2 elements, each
having 4 elements,

each 4 (or more) bits

10 elements, each
of 4 (or more) bits

Hierarchical Views of Data

0x99FAC6F975BABB3EDADD847FC237249F

[0xDADD847FC237249F 0x99FAC6F975BABB3E]

[[0xC237249F 0xDADD847F] [0x75BABB3E 0x99FAC6F9]]

Primitive Operations

 Arithmetic operators
 Result is modulo the word

size of the arguments

 Boolean operators
 From bits, to arbitrarily

nested matrices

 Comparison operators
 Equality, order

 Conditional operator
 Expression-level if-then-else

 Shift and rotate operators

 Matrix operators
 Concatenation, indexing, size

Indexing Matrices

 Zero-based indexing from the left
[50 .. 99] @ 10 = 60

 Numbers are written in traditional notation, but still accessed little-
endian

0x40 @ 6 = True

 Bulk indexing
[50 .. 99] @@ [10 .. 20] = [60 .. 70]

 Permutations
[1 .. 4] @@ [1 2 3 0] = [2 3 4 1]
[1 .. 4] @@ [3 2 .. 0] = [4 3 2 1]

Cryptol Definitions

 First-order non-recursive equations
x = 13;
incr x = x + 1;
f (x, y) = 2 * x + 3 * y + 1;

 Pattern Matching on Matrices
sum4 [a b c d] = a + b + c + d

 Nested definitions
f x = [y z]
where {y = x + 1;

z = not x};

Each definition
is assigned a

type

add32 0xB4 0x3A0x3A

Size Polymorphism

How many
bits am I?

Aha!
Must be
32 bits

Size Polymorphism

x = 0x3A

How many
bits am I?

At least 6
bits ...

x : {a} (a >= 6) =>
[a]

Shape Polymorphism

swab [a b c d] = [d c b a]

What types do
I handle?

Four of
something

...

Four of
something
to four of
the same
thing...

swab : {a} [4]a -> [4]a

Controlling Polymorphism

xor(xs, ys) = [(x & ~y) | (~x & y)
|| x <- xs
|| y <- ys]

xor : {a b c}
([a]b,[c]b) -> [min(a,c)]b

Controlling Polymorphism

xor : {a} ([a], [a]) -> [a]
xor(xs, ys) = [(x & ~y) | (~x & y)

|| x <- xs
|| y <- ys]

A Cryptol Idiom: Padding

Key padding for MD5:

pad : {a} (6 >= a) =>
[a] -> [512*((a+65+511)/512)]

pad key = key # [True] # 0 # size
where
size : [64]
size = sizeOf key

0 can have any
size, so fills out
to satisfy the

type constraint

Bounded Iteration

 Borrowed the comprehension notion from set theory
 { a+b | a ∈ A, b ∈ B}
 Adapted to matrices (i.e. sequences)

 Applying an operation to each element
[2*x + 3 || x <- [1 2 3 4]] = [5 7 9 11]

 Cartesian traversal
[[x y] || x <- [0..2], y <- [3..4]]

= [[0 3] [0 4] [1 3] [1 4] [2 3] [2 4]]

 Parallel traversal
[x + y || x <- [1..3]

|| y <- [3..7]] = [4 6 8]

Recurrence

 Textual description of shift circuits
 Traditionally use a language of commands

 Arrays, updates, and command-loops

 Alternatively, use stream-equations
 Stream-definitions can be recursive

output = [0] # [y+1 || y<-output];

0output

+1

Stream Equations

as = [Ox3F OxE2 Ox65 OxCA] # new;
new = [a ^ b ^ c || a <- as

|| b <- as @@ [1 ..]
|| c <- as @@ [3 ..]];

3Fas E2

^

65 CA

^

new

Alternative Description

as = [Ox3F] # bs;
bs = [OxE2 Ox65] # cs;
cs = [OxCA] # [a ^ b ^ c || a<-as

|| b<-bs
|| c<-cs];

3Fas E2

^

65 CA

^

bs cs

Additional Complexity

as = [Ox3F OxE2 Ox65]
[c^c’ || c <- cs

|| c’<- cs @@ [1 ..]];
cs = [OxCA] # [a^a’ || a <- as

|| a’<- as @@ [1 ..]];

3Fas E2

^

65 CA^
cs

RC6 Key Expansion

 Original specification is written in terms of arrays
and updates
 Key expansion code appears entirely symmetrical
 Cryptol demonstrates exposes non-symmetry

 No hidden effects

ss = [(s+a+b) <<< 3 || s <- initS # ss
|| a <- [0] # ss
|| b <- [0] # ls];

ls = [(l+a+b)<<<(a+b) || l <- initL # ls
|| a <- ss
|| b <- [0] # ls];

“Circuit” Diagram

0

0

ss

ls

initS

initL

a
s

b

b
a

l

Cryptol Idiom: For Loops

 Factors
 Capture the body of the for-loop as a function
 Identify the state variables
 Define a recurrence

 Example
 Sum the elements of a matrix:

sum xs = sums @ (sizeOf xs - 1)
where sums = [x + y || x <- xs

|| y <- [0] # sums];

DES Encryption

des (pt, keys) = permute (FP, swap last)
where
{ pt' = permute (IP, pt);
iv = [round (k, lr) || k <- keys

|| lr <- [pt'] # iv];
last = iv @ (sizeOf keys - 1);

};

round (k, [l r]) = r # (l ^ f (r, k))
where
f (r, k) = permute(PP, SBox(k ^ permute(EP, r)));

DES SBox Lookup

SBox : [48] -> [32]
SBox x = join [sbox (n, b) || n <- [0 .. 7]

|| b <- split x];

sbox : ([4], [6]) -> [4]
sbox (n, [b1 b2 b3 b4 b5 b6]) = (s @ n

@ [b1 b6]
@ [b2 b3 b4 b5]);

Indexing nested
structures.

@ is left-associative

Cryptol Types

 Two kinds of types

 Value types (Bits, n-Dimensional matrices)
Bit [32] [a][48] [6][b]c

 Size types (describe the size of matrices)
 Finite: 16 a+7 2**(b-1)
 Infinite: ko(4)

 Definitions have constraints
 Size constraints: provide lower-bounds on sizes
a >= 6 b >= min(7, c + d)

 Subtype constraints (experimental):
[a*b]c <= [a][b]c

Current Cryptol Compiler

 Type System
 Variant of Hindley-Milner style type system

 Prevents inconsistent use of sizes
 Identifies large class of ill-formed streams

 Implementation
 Constraint-simplification is currently done ad hoc
 Plan to integrate in an off-the-shelf arithmetic solver

 Execution
 Interpreter is well developed
 C-code generator is nearly finished

 Can then use Cryptol as a crypto-YACC

One Specification,
Multiple Implementations

 Fundamental DSL concept:

Distinguish between model and rendition

 Cryptol specifications are designed to be independent of
the target language
 Interpret specification
 Reference implementation
 Generate C code or Java
 Machines with a alternate word sizes
 Generate AIM code
 Wrapper to make CDSA compliant

But what about
cryptographic

modes?

Electronic code book

ecb(pt, key) = ct
where
ct = [encrypt (x, key) || x <- pt]

enckey

Cipher Block Chaining

cbc(iv, pt, key) = ct
where
ct = [encrypt (x^y, key) || x <- pt

|| y <- iv # ct]

enckey^ iv

	Cryptol:�A Domain-Specific Language for Cryptographic Service Providers
	Plan for this Talk
	Tension
	Domain-Specific Languages
	Where do DSLs come from?
	Crypto-algorithm domain analysis
	Data in Cryptol
	Hierarchical Views of Data
	Primitive Operations
	Indexing Matrices
	Cryptol Definitions
	Size Polymorphism
	Size Polymorphism
	Shape Polymorphism
	Controlling Polymorphism
	Controlling Polymorphism
	A Cryptol Idiom: Padding
	Bounded Iteration
	Recurrence
	Stream Equations
	Alternative Description
	Additional Complexity
	RC6 Key Expansion
	“Circuit” Diagram
	Cryptol Idiom: For Loops
	DES Encryption
	DES SBox Lookup
	Cryptol Types
	Current Cryptol Compiler
	One Specification,�Multiple Implementations
	Electronic code book
	Cipher Block Chaining

