
Cryptol TutorialCryptol Tutorial

Challenge: Challenge:
To Support the Correctness of To Support the Correctness of
Implementations of CryptoImplementations of Crypto--algorithmsalgorithms

• Crypto-alg V&V critical in crypto-
modernization programs

• Must manage assurance in face of
exploding complexity and demands

• Not just the NSA / DoD
– 25% of algorithms submitted for FIPS

validation had security flaws
• Director NIST CMVP, March 26, 2002

Contributing FactorsContributing Factors

Variety of requirements

Requires skills in math
AND programming

Variety of target
architectures

Validation is complex
and tedious

Lack of clear reference Lack of clear reference
implementationsimplementations

#define MDS_GF_FDBK 0x169
#define LFSR1(x) (((x) >> 1) ^ (((x) & 0x01) ?
MDS_GF_FDBK/2 : 0))
#define LFSR2(x) (((x) >> 2) ^ (((x) & 0x02) ?

MDS_GF_FDBK/2 : 0)
^ (((x) & 0x01) ?
MDS_GF_FDBK/4 : 0))

#define Mx_1(x) ((DWORD) (x))
#define Mx_X(x) ((DWORD) ((x) ^ LFSR2(x)))
#define Mx_Y(x) ((DWORD) ((x) ^ LFSR1(x) ^
LFSR2(x)))
#define M00 Mul_1
#define M01 Mul_Y
return ((M00(b[0]) ^ M01(b[1]) ^

M02(b[2]) ^ M03(b[3]))) ^
((M10(b[0]) ^ M11(b[1]) ^
M12(b[2])^ M13(b[3])) << 8)^
((M20(b[0]) ^ M21(b[1]) ^
M22(b[2])^ M23(b[3])) <<16)^
((M30(b[0]) ^ M31(b[1]) ^
M32(b[2])^ M33(b[3])) <<24);

It’s hard to relate implementations to the underlying math

Approach:Approach:
Specifications and Formal ToolsSpecifications and Formal Tools

• Declarative specification language
– Language tailored to the crypto domain
– Designed with feedback from NSA

cryptographers
• Execution and Validation Tools

– Tool suite for different implementation
and verification applications

– In use by crypto-implementers

CryptolCryptol
The Language of

Cryptography

One Specification One Specification -- Many UsesMany Uses

Design Validate

Build

Cryptol
Interpreter

Domain-Specific
Design Capture

w0=u-I*I modp + u-I*wl mod p
s=f*(w0 +pw2) (mod q)

Verify crypto
implementations

Models and
test cases

FPGA(s)

Target
HW code

Cryptol
Tools

Assured
Implementation

C or Java

Special purpose
processor

Design Validate

Build

Cryptol
Interpreter

w0=u-I*I modp + u-I*wl mod p
s=f*(w0 +pw2) (mod q)

DomainDomain--Specific Specific
Design CaptureDesign Capture

rc6ks : {a} (w >= width a) =>
[a][8] -> [r+2][2][w];

rc6ks key = split (rs >>> (v - 3 * nk))
where {
c = max (1, (width key + 3) / (w / 8));
v = 3 * max (c, nk);
initS = [pw (pw+qw) ..]@@[0 .. (nk-1)];
padKey : [4*c][8];
padKey = key # zero;
initL : [c][w];
initL = split (join padKey);
ss = [| (s+a+b) <<< 3

|| s <- initS # ss
|| a <- [0] # ss
|| b <- [0] # ls |];

ls = [| (l+a+b) <<< (a+b)
|| l <- initL # ls
|| a <- ss
|| b <- [0] # ls |];

rs = ss @@ [(v-nk) .. (v-1)];
};

rc6ks : {a} (w >= width a) =>
[a][8] -> [r+2][2][w];

rc6ks key = split (rs >>> (v - 3 * nk))
where {
c = max (1, (width key + 3) / (w / 8));
v = 3 * max (c, nk);
initS = [pw (pw+qw) ..]@@[0 .. (nk-1)];
padKey : [4*c][8];
padKey = key # zero;
initL : [c][w];
initL = split (join padKey);
ss = [| (s+a+b) <<< 3

|| s <- initS # ss
|| a <- [0] # ss
|| b <- [0] # ls |];

ls = [| (l+a+b) <<< (a+b)
|| l <- initL # ls
|| a <- ss
|| b <- [0] # ls |];

rs = ss @@ [(v-nk) .. (v-1)];
};

• Models crypto-algorithm
• Natural expression
• Clear and unambiguous
• Structure and guide an

implementation

Key Ideas in CryptolKey Ideas in Cryptol

• Domain-specific data and control abstractions
– Sequences
– Recurrence relations (not for-loops)

• Powerful data transformations
– Data may be viewed in many ways
– Machine independent

• Flexible sizes
– Algorithms parameterized on size

• Size constraints are explicit in many specs
• Number of iterations may depend on size

– A Size-Type system captures and maintains size constraints

Choosing what to leave out is critical

Test
cases

Cryptol
Tools

Usage: TestingUsage: Testing

Cryptol
Reference

Spec
Hand coded

Implementation • Generates “known good
tests”

• Built-in capture of
intermediate vectors
simplifies debugging

• Easy to generate new
intermediate vectors as
needed

Reference
Test

Cases

Interpret and
Validate

Validated
Implementation

Cryptol ProgramsCryptol Programs

• File of mathematical definitions
– Two kinds of definitions: values and functions
– Definitions may be accompanied by a type

declarations (a signature)
• Definitions are computationally neutral

– Cryptol tools provide the computational content
(interpreters, compilers, code generators,
verifiers)

x : [4][32];
x = [23 13 1 0];

F : ([16],[16]) -> [16];
F (x,x’) = 2 * x + x’;

x : [4][32];
x = [23 13 1 0];

F : ([16],[16]) -> [16];
F (x,x’) = 2 * x + x’;

Data typesData types

• Homogeneous sequences
[False True False True False False True]
[[1 2 3 4] [5 6 7 8]]

• Numbers are represented as sequences of bits
– Aka “words”
– Decimal, octal (0o), hex (0x), binary (0b)

123, 0xF4, 0b11110100

• Quoted strings are just syntactic sugar for
sequences of 8-bit words
“abc” = [0x61 0x62 0x63]

• Heterogenous data can be grouped together
into tuples
(13, “hello”, True)

Standard OperationsStandard Operations

• Arithmetic operators
– Result is modulo the

word size of the
arguments

– + - * / % **

• Boolean operators
– From bits, to arbitrarily

nested matrices of the
same shape

– & | ^ ~

• Comparison operators
– Equality, order
– == != < <= > >=

– returns a Bit

• Conditional operator
– Expression-level if-

then-else
– Like C’s a?b:c

SequencesSequences

• Sequence operators
– Concatenation (#), indexing (@), size
[1..5] # [3 6 8] = [1 2 3 4 5 3 6 8]
[50 .. 99] @ 10 = 60

• Shifts and Rotations
– Shifts (<<, >>), Rotations (<<<, >>>)
[0 1 2 3] << 2 = [2 3 0 0]

Cryptol TypesCryptol Types

• Types express size and shape of data

[[0x1FE 0x11] [0x132 0x183]
[0x1B4 0x5C] [0x26 0x7A]] has type [4][2][9]

• Strong typing
– The types provide mathematical guarantees on

interfaces
• Type inference

– Use type declarations for active documentation
– All other types computed

• Parametric polymorphism
– Express size parameterization of algorithms

AES TypesAES Types
• “The State can be pictured as a rectangular array of bytes. This

array has four rows, the number of columns is denoted by Nb and
is equal to the block length divided by 32.”

state : [4][Nb][8];

• “The input and output used by Rijndael at its external interface are
considered to be one-dimensional arrays of 8-bit bytes numbered
upwards from 0 to the 4*Nb-1. The Cipher Key is considered to be
a one-dimensional array of 8-bit bytes numbered upwards from 0
to the 4*Nk-1.”

input : [4 * Nb][8];
key : [4 * Nk][8];

AES Block Diagram

: [Nx][4][Nb][8]

XK

PT

CT

: [4][Nb][8]

: [4][Nb][8] Key addition

Shift row

Byte substitution

Key addition

Mix column

Shift row

Byte substitution

Key addition

Nb Nk
AES APIAES API

keySchedule : [4*Nk][8] -> Xkey
encrypt : (Xkey,[4*Nb][8]) -> [4*Nb][8]
decrypt : (Xkey,[4*Nb][8]) -> [4*Nb][8]

Xkey = ([4][Nb][8],
[max(Nb,Nk)+5][4][Nb][8],
[4][Nb][8])

Splitting and Joining sequencesSplitting and Joining sequences

0x99FAC6F975BABB3E

split

[0x99 0xFA 0xC6 0xF9 0x75 0xBA 0xBB 0x3E]

Polymorphic operation:
use a type to resolve
how many terms in

the split list

join

0x99FAC6F975BABB3E

StripingStriping

• 2D sequences considered to be row major

stripe : [4*Nb][8] -> [4][Nb][8];
stripe(block) = transpose(split(block));

unstripe : [4][Nb][8] -> [4*Nb][8];
unstripe(state) = join(transpose(state));

AES encryptionAES encryption

encrypt : (Xkey,[4*Nb][8]) -> [4*Nb][8];

encrypt(XK,PT) = unstripe(Rounds(State,XK))
where {
State : [4][Nb][8];
State = stripe(PT);

};

Sequence ComprehensionsSequence Comprehensions

• The comprehension notion borrowed from set
theory
– { a+b | a ∈ A, b ∈ B}
– Adapted to sequences)

• Applying an operation to each element

[| 2*x + 3 || x <- [1 2 3 4] |]
= [5 7 9 11]

TraversalsTraversals

• Cartesian traversal

[| [x y] || x <- [0 1 2], y <- [3 4] |]
= [[0 3] [0 4]

[1 3] [1 4]
[2 3] [2 4]]

• Parallel traversal

[| x + y || x <- [1 2 3]
|| y <- [3 4 5 6 7] |]

= [4 6 8]

Row traversals in AESRow traversals in AES

ShiftRow : [4][Nb][8] -> [4][Nb][8];

ShiftRow(state)
= [| row >>> i || row <- state

|| i <- [0 1 2 3] |]

Column traversalsColumn traversals

MixColumn : [4][Nb][8] -> [4][Nb][8];
MixColumn(state)
= transpose [| ptimes(col,cx)

|| col <- transpose(state)|]

Nested traversalsNested traversals

ByteSub : [4][Nb][8] -> [4][Nb][8];
ByteSub(state) = [| [| sbox @ a || a <- row |]

|| row <- state |]

sbox : [256][8];
sbox = [| affine(inverse x)

|| x <- [0..255] |];

RecurrenceRecurrence

• Textual description of shift circuits
– Follow mathematics: use stream-

equations
– Stream-definitions can be recursive

nats = [0] # [| y+1 || y <- nats |];

nats 0

+1

More Complex Stream EquationsMore Complex Stream Equations

as = [Ox3F OxE2 Ox65 OxCA] # new;
new = [| a ^ b ^ c || a <- as

|| b <- drop(1,as)
|| c <- drop(3,as)|];

3Fas E2

^

65 CA
new

^

AES roundsAES rounds

Rounds(State,(initialKey,rndKeys,finalKey)) = final
where {

istate = State ^ initialKey;
rnds = [istate] # [| Round(state,key)

|| state <- rnds
|| key <- rndKeys |];

final = FinalRound(last(rnds),finalKey);
};

Round :([4][Nb][8],[4][Nb][8]) -> [4][Nb][8];
Round (State,RoundKey)

= MixColumn(ShiftRow(ByteSub(State))) ^ RoundKey

AES Key ExpansionAES Key Expansion

keyExpansion : [4*Nk][8] -> [(Nr+1)*Nb][4][8];
keyExpansion key = W

where {
keyCols : [Nk][4][8];
keyCols = split key;
W = keyCols # [| nextWord (i, old, prev)

|| i <- [Nk..((Nr+1)*Nb-1)]
|| old <- W
|| prev <- drop (Nk-1, W)

|]; };

RC6 Key ExpansionRC6 Key Expansion

• Original specification is written in terms of arrays and
updates
– Key expansion code appears entirely symmetrical
– Cryptol exposes non-symmetry

ss = [| (s+a+b) <<< 3 || s <- initS # ss
|| a <- [0] # ss
|| b <- [0] # ls |];

ls = [| (l+a+b)<<<(a+b) || l <- initL # ls
|| a <- ss
|| b <- [0] # ls |];

“Circuit” Diagram“Circuit” Diagram

0

0

ss

ls

initS

initL

a
s

b

b
a

l

Modes: Electronic code bookModes: Electronic code book

• Modes are expressed in the same way
as other cycles

ct = [| encrypt (x, key) || x <- pt |]

enckey

Modes: Cipher Block ChainingModes: Cipher Block Chaining

ct = [iv] # [| encrypt (x^y, key)
|| x <- pt
|| y <- ct |]

pt ct

enckey^ iv

Ideal for Reference ImplementationsIdeal for Reference Implementations

• Domain Specific
– Naturally understandable to developers
– Simplifies expression, inspection, reuse

• Executable
– Run tests and debug for correctness
– Generate test cases

• Declarative
– Not implementation-specific, concise
– Multiple uses – test, generation, model building, etc.
– Highly retargetable to any architecture

• Unambiguous
– Formal basis
– Precise syntax and semantics
– Independent of underlying machine models

Models

Cryptol
Tools

Usage: VerificationUsage: Verification

Cryptol
Reference

Spec
Hand-coded

Implementation

Model of
Implementation

Symbolic
ACL2

Model of
Reference

• Model checking and theorem proving now in
development

• Enables formal verification between
reference and implementation

• Much higher assurance of correctness

Model CheckingModel Checking

• Logic formula describing input-output function
– “Symbolic bits”
– Explore all possible cases concurrently

• Binary Decision Diagrams (BDDs)
– Maximal sharing between cases
– Equivalence of two BDDs is constant time

• But, without proper care, BDDs grow
exponentially

• SAT solving
– Discover potential equivalences within the

formulae
• Lemmas

– Powerful techniques for demonstrating the
equivalences

a

bb

T F

Verification ArchitectureVerification Architecture

Implementation
environment

Cryptol
Execute and
compareSymbolic

module
Symbolic
module

a

bT

T F

a

bT

T F

=
?

Strategies for Crypto VerificationStrategies for Crypto Verification

Postlude

Small, relatively easy to
apply brute force methods

1. Brute force:
Verify a variant with a
reduced number of rounds

2. Some user intervention:
Isolate body of loop,
verify the body, not the loop

Rounds

Prelude

Why does this work?Why does this work?

• Not trying to solve a general problem
– Relatively small # of iterations overall
– Number of rounds largely independent of

overall correctness
– Simple structure of most crypto-algorithms
– Relatively small memory footprint

• The Role of Cryptol
– Scoping down to the crypto domain

• Enables effective use of powerful verification tools

– Authoritative model in this domain

Usage: Code GenerationUsage: Code Generation
FPGA(s)

Cryptol
Tools

Cryptol
Tools Target

HW code

C or Java

Special purpose
processor

A single correct, executable Cryptol specification
can be deployed to a variety of target platforms…

Java

CC

Cryptol
Reference

Spec

FPGA

future
Special purpose

processor

• One specification to ‘get right’
• Many targets for use

FPGAs: An OpportunityFPGAs: An Opportunity

• Configurable hardware
– Very fast, hugely parallel resource

• Ubiquitous FPGAs in the future?
– Large FPGA farms connected to network servers
– General FPGA resources attached to computation

engines: SGI, SRC, for example
• The Crypto-domain

– Highly parallel encryption/decryption
– Highly parallel crypto-analysis

• Natural match between Crypto and FPGAs
– Manipulation of bit sequences
– Parallelism

The ProblemThe Problem

FPGAs are difficult to use:

FPGA tools are designed for “hardware-
engineering” not “software-engineering”di

re
c

Traditional software languages have
inappropriate sequentialization built-in

M
ism

at
ch

 in

tio
ns

 b
ot

h

Key ObservationKey Observation Henceforth space by itself,
and time by itself, are
doomed to fade away
into mere shadows, and
only a kind of union of the
two will preserve an
independent reality.
Minkowski,
Space and Time, Sept. 21, 1908

• Sequences are descriptions only
• Implementation of sequences

can be:
– Laid out in time

• Loops and/or state machines

– Laid out in space
• Parallel and/or pipeline

– Or a mixture of both
• The mathematical specification

is the same

Sequentialization in Cryptol comes only from
data-dependency — just like hardware
Sequentialization in Cryptol comes only from
data-dependency — just like hardware

FPGA CompilationFPGA Compilation
RouteRoute

• Adapt Cyptol-to-C
compiler to produce

1. Lava (via Jbits)
2. VHDL

Cryptol

Lava

EDIF

JBits

Lava system

Compile

Naturally Matched Technologies Naturally Matched Technologies
• Cryptol

– Language designed for crypto-mathematicians
– Generate finite-state machine descriptions
– Formal semantics

• Lava
– Language designed for 2D FPGA specification
– Compute placements
– Formal semantics

BenefitsBenefits

• FPGA resources become available to crypto-mathematicians
– Not just to hardware engineers

• Low barrier-to-entry for FPGA use
– Cryptol spec may have been developed for other purposes
– Standard libraries of Cryptol specifications
– FPGA implementation is a small delta for the user

• Cross-compilation development scenario
– Develop specs on conventional hardware
– Execute on FPGA

www.www.cryptolcryptol.net.net

Design Validate

Build

Cryptol
Interpreter

Domain-Specific
Design Capture

w0=u-I*I modp + u-I*wl mod p
s=f*(w0 +pw2) (mod q)

Verify crypto
implementations

Models and
test cases

FPGA(s)

Target
HW code

Cryptol
Tools

Assured
Implementation

C or Java

Special purpose
processor

	Cryptol Tutorial
	Challenge: To Support the Correctness of Implementations of Crypto-algorithms
	Contributing Factors
	Lack of clear reference implementations
	Approach:Specifications and Formal Tools
	One Specification - Many Uses
	Domain-Specific Design Capture
	Key Ideas in Cryptol
	Usage: Testing
	Cryptol Programs
	Data types
	Standard Operations
	Sequences
	Cryptol Types
	AES Types
	AES API
	Splitting and Joining sequences
	Striping
	AES encryption
	Sequence Comprehensions
	Traversals
	Row traversals in AES
	Column traversals
	Nested traversals
	Recurrence
	More Complex Stream Equations
	AES rounds
	AES Key Expansion
	RC6 Key Expansion
	“Circuit” Diagram
	Modes: Electronic code book
	Modes: Cipher Block Chaining
	Ideal for Reference Implementations
	Usage: Verification
	Model Checking
	Verification Architecture
	Strategies for Crypto Verification
	Why does this work?
	Usage: Code Generation
	FPGAs: An Opportunity
	The Problem
	Key Observation
	FPGA CompilationRoute
	Naturally Matched Technologies
	Benefits
	www.cryptol.net

