
Cryptol Tutorial

Worked Example

purely functional
GALOISCONNECTIONS

© 2001, 2002, Galois Connections Inc.

IDEA
� 64-bit blocks

� Viewed as four 16-bit blocks
� 128-bit key

� Expanded to fifty six 16-bit keys
� Eight 16-bit keys from the key itself
� Successive rotation to the left by 25 bits

� 16-bit operations
� Addition, modulo 2**16
� Multiplication, modulo 2**16+1

� Treat 0 as 2**16
� 8 rounds, plus post-whitening

© 2001, 2002, Galois Connections Inc.

(diagram)
1
(1)

7 additional rounds

Plaintext (64 bit)
16 bit 16 bit 16 bit 16 bit

Ciphertext (64 bit)

16 bit 16 bit 16 bit 16 bit

First
round

Output
Transform
(9th round)

2
(1)

3
(1)

4
(1)

1
(9)

2
(9)

3
(9)

4
(9)

5
(1)

6
(1)

Multiplication
Mod 2**16 + 1

Addition
mod 2**16

16 bit exclusive-or

© 2001, 2002, Galois Connections Inc.

Multiplication
ideaMul': ([16],[16]) -> [16];
ideaMul' (x,y) = z
 where {
 a,b,c,m: [33]; // worst case needs 33 bits
 a = if (x == 0)
 then 2**16 // if 0 use 2**16
 else 0 # x; // pad to 33 bits
 b = if (y == 0)
 then 2**16 // if 0 use 2**16
 else 0 # y; // pad to 33 bits
 c = (a * b) % m; // multiply modulo 2**16 + 1
 m = 2**16 + 1; // the modulus
 z = c @@ [17..32]; // return least sig 16 bits of product
 };

© 2001, 2002, Galois Connections Inc.

Multiplication (More Efficient)
ideaMul: ([16],[16]) -> [16];
ideaMul (x,y) = z
 where {
 a,b,c,m : [32];
 a = 0 # x; // pad to 32 bits
 b = 0 # y; // pad to 32 bits
 c = if (a == 0)
 then m - b // 2**16 * b = m - b (mod m)
 else if (b == 0)
 then m - a // 2**16 * a = m - a (mod m)
 else (a * b) % m;
 m = 2**16 + 1; // the modulus
 z = c @@ [16..31]; // return least sig 16 bits of product
 };

© 2001, 2002, Galois Connections Inc.

Key Schedule
encryptionKeySchedule: [128] -> [52][16];
encryptionKeySchedule key = sks'
 where {
 ks = [key] # [| k <<< 25 || k <- ks |];
 ks': [7][128];
 ks' = ks @@ [0 .. 6];

 sks: [56][16];
 sks = join [| splitBy (8,k) || k <- ks' |];
 sks': [52][16];
 sks' = sks @@ [0..51]; };

© 2001, 2002, Galois Connections Inc.

Block Encryption
encryptBlock: ([64],[52][16]) -> [64];
encryptBlock (pt,sks) = join ct
 where {
 ks': [48][16];
 ks' = sks @@ [0 .. 47];
 ks: [8][6][16];
 ks = split ks';
 pt': [4][16];
 pt' = split pt;
 ps: [9][4][16];
 ps = [pt'] # [| ideaRound (p,k) || p <- ps
 || k <- ks |];
 ct' = ps @ 8; // more...

© 2001, 2002, Galois Connections Inc.

Encryption continued
 x0,x1,x2,x3: [16];
 x0 = ct' @ 0;
 x1 = ct' @ 1;
 x2 = ct' @ 2;
 x3 = ct' @ 3;
 k0 = sks @ 48;
 k1 = sks @ 49;
 k2 = sks @ 50;
 k3 = sks @ 51;
 y0 = ideaMul (x0,k0);
 y1 = x2 + k1;
 y2 = x1 + k2;
 y3 = ideaMul (x3,k3);
 ct = [y0 y1 y2 y3]; };

Order of x’s is
switched

© 2001, 2002, Galois Connections Inc.

Each Round
ideaRound: ([4][16],[6][16]) -> [4][16];
ideaRound ([x0 x1 x2 x3],[k0 k1 k2 k3 k4 k5]) = [y0 y1 y2 y3]
 where {
 t0,t1,t2,t3,t4,t5,t6,t7,t8,t9: [16];
 t0 = ideaMul (x0,k0);
 t1 = x1 + k1;
 t2 = x2 + k2;
 t3 = ideaMul (x3,k3);
 t4 = t0 ^ t2;
 t5 = t1 ^ t3;
 t6 = ideaMul (t4,k4);
 t7 = t5 + t6;
 t8 = ideaMul (t7,k5);
 t9 = t6 + t8;

y0,y1,y2,y3: [16];
 y0 = t0 ^ t8;
 y1 = t2 ^ t8;
 y2 = t1 ^ t9;
 y3 = t3 ^ t9;
 };

© 2001, 2002, Galois Connections Inc.

Style Critique
� Breaking down into tiny steps

� Can help debugging
� Gives an “assembly code” result

� Abstraction
� Name important concepts
� Keep separate concepts separate

� Redo IDEA using more abstraction

© 2001, 2002, Galois Connections Inc.

Multiplication
ideaMul': ([16],[16]) -> [16];
ideaMul' (a,b) = to16 ((to33 a * to33 b) % modulus);

modulus = 2**16 + 1; // Modulus for multiplication

to33 : [16] -> [33];
to33 x = if (x == 0)
 then 2**16 // if 0 use 2**16
 else 0 # x; // otherwise pad with 0s

to16 z = z @@ [w-16 .. w-1]
 where {w = width z};

© 2001, 2002, Galois Connections Inc.

Multiplication (more efficient)
ideaMul: ([16],[16]) -> [16];
ideaMul (a,b) // 2**16 * b = m - b (mod m)
 = to16 (if (a == 0) then modulus - to32 b
 else
 if (b == 0) then modulus - to32 a
 else
 (to32 a * to32 b) % modulus
);

to32 : [16] -> [32];
to32 x = 0 # x; // pad to 32 bits

© 2001, 2002, Galois Connections Inc.

Key Expansion
encryptionKeySchedule: [128] -> [52][16];
encryptionKeySchedule key = sks @@ [0..51]
 where {
 ks: [inf][128];
 ks = [key] # [| k <<< 25 || k <- ks |];

 sks: [inf][16];
 sks = join [| splitBy (8,k) || k <- ks |];
 };

© 2001, 2002, Galois Connections Inc.

Block Encryption
encryptBlock: ([64],[52][16]) -> [64];
encryptBlock (pt,sks) = join ct
 where {
 ks: [8][6][16];
 ks = split (sks @@ [0 .. 47]);
 pt': [4][16];
 pt' = split pt;

 ps: [9][4][16];
 ps = [pt'] # [| ideaRound (p,k) || p <- ps
 || k <- ks |];
 ct = whiten (switch (ps @ 8), sks@@[48..51]);
 };

© 2001, 2002, Galois Connections Inc.

Helper Functions

whiten : ([4][16],[4][16]) -> [4][16];
whiten ([x0 x1 x2 x3], [k0 k1 k2 k3])
 = [(ideaMul(x0,k0)) (x1 + k1)
 (x2 + k2) (ideaMul(x3,k3))];

switch [a b c d] = [a c b d];

© 2001, 2002, Galois Connections Inc.

Each Round

ideaRound: ([4][16],[6][16]) -> [4][16];
ideaRound (x,k) = switch t ^ [r r s s]
 where {
 t = whiten (x,k@@[0..3]);

 p = ideaMul (t@0 ^ t@2, k@4);
 q = p + (t@1 ^ t@3);
 r = ideaMul (q,k@5);
 s = p + r;
 };

© 2001, 2002, Galois Connections Inc.

Cryptol Idiom: For Loops

� Factors
� Capture the body of the for-loop as a function
� Identify the state variables
� Define a recurrence

� Example: Sum the elements of a matrix:

sum xs = sums @ (width xs - 1)
 where
 { sums = [| x + y || x <- xs
 || y <- [0] # sums |];
 };

© 2001, 2002, Galois Connections Inc.

add32 0xB4 0x3A 0x3A

Size Polymorphism

How many
bits am I?

Aha!
Must be
32 bits

© 2001, 2002, Galois Connections Inc.

Size Polymorphism

x = 0x3A

How many
bits am I?

At least 6
bits ...

x : {a} (a >= 6) => [a]

© 2001, 2002, Galois Connections Inc.

Shape Polymorphism

swab [a b c d] = [d c b a]

What types do
I handle?

Four of
something

...

Four of
something
to four of
the same
thing...

swab : {a} [4]a -> [4]a

© 2001, 2002, Galois Connections Inc.

Controlling Polymorphism

xor(xs, ys) = [| (x & ~y) | (~x & y)
 || x <- xs
 || y <- ys |]

xor : {a b c}
 ([a]b,[c]b) -> [min(a,c)]b

© 2001, 2002, Galois Connections Inc.

Controlling Polymorphism

xor : {a} ([a], [a]) -> [a]
xor(xs, ys) = [| (x & ~y) | (~x & y)
 || x <- xs
 || y <- ys |]

© 2001, 2002, Galois Connections Inc.

A Cryptol Idiom: Padding

� Key padding for MD5:

pad : {a} (6 >= a) =>
 [a] -> [512*((a+65+511)/512)]

pad key = key # [True] # 0 # size
 where

 size : [64]
 size = width key

0 can have any
size, so fills out
to satisfy the

type constraint

© 2001, 2002, Galois Connections Inc.

Split

� Common task
� Treat a 32 bit word as 4 bytes

toBytes : [32] -> [4][8];
toBytes x = split x;

� The split function has a very general type
� Can be used to perform any split

split : {a b c} [a*b]c -> [a][b]c

© 2001, 2002, Galois Connections Inc.

Join

� Converse task
� Treat 4 bytes as a 32 bit word

fromBytes : [4][8] -> [32];
fromBytes x = join x;

� The join function has a very general type
� Can be used to perform any join

join : {a b c} [a][b]c -> [a*b]c

© 2001, 2002, Galois Connections Inc.

General reshaping

� Composite task
� Treat four 12-bit words as three 16 bit words

change : [4][12] -> [3][16];
change x = split (join x);

� The general version of this has a very general type
� Can be used to perform any regular rearranging

reshape : {a b c d e}
 (d*e == a*b) => [a][b]c -> [d][e]c;
reshape x = split (join x);

© 2001, 2002, Galois Connections Inc.

Transpose

� Transpose an nxm structure into an mxn structure
� From [[1 2 3] [4 5 6]]
� To [[1 4] [2 5] [3 6]]

transpose xss
= [| col (j,xss)
 || j <- [0 .. (width (xss @ 0) - 1)] |];

col (j,xss)
= [| (xss @ i) @ j
 || i <- [0 .. (width xss - 1)] |];

© 2001, 2002, Galois Connections Inc.

Executing Cryptol

� A Cryptol interpreter

� A compiler that translates Cryptol specifications into
executable code
� Reference implementations currently

� Cryptol implementations of the AES algorithms shall be
fast enough for checking the AES Known Answer Tests
and Monte Carlo Tests

© 2001, 2002, Galois Connections Inc.

One Specification,
Multiple Implementations

� Fundamental DSL concept:

Distinguish between model and rendition

� Cryptol specifications are designed to be independent of
the target language
� Interpret specification
� Reference implementation
� Generate C code or Java
� Machines with alternate word sizes, endian-ness

	GALOISCONNECTIONS
	IDEA
	(diagram)
	Multiplication
	Multiplication (More Efficient)
	Key Schedule
	Block Encryption
	Encryption continued
	Each Round
	Style Critique
	Multiplication
	Multiplication (more efficient)
	Key Expansion
	Block Encryption
	Helper Functions
	Each Round
	Cryptol Idiom: For Loops
	Size Polymorphism
	Size Polymorphism
	Shape Polymorphism
	Controlling Polymorphism
	Controlling Polymorphism
	A Cryptol Idiom: Padding
	Split
	Join
	General reshaping
	Transpose
	Executing Cryptol
	One Specification,Multiple Implementations

