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IDEA
� 64-bit blocks

� Viewed as four 16-bit blocks
� 128-bit key

� Expanded to fifty six 16-bit keys
� Eight 16-bit keys from the key itself
� Successive rotation to the left by 25 bits

� 16-bit operations
� Addition, modulo 2**16
� Multiplication, modulo 2**16+1

� Treat 0 as 2**16
� 8 rounds, plus post-whitening
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Multiplication
ideaMul': ([16],[16]) -> [16];
ideaMul' (x,y) = z
 where {
  a,b,c,m: [33];  // worst case needs 33 bits
  a = if (x == 0)
      then 2**16  // if 0 use 2**16
      else 0 # x;  // pad to 33 bits
  b = if (y == 0)
      then 2**16  // if 0 use 2**16
      else 0 # y;  // pad to 33 bits
  c = (a * b) % m;  // multiply modulo 2**16 + 1
  m = 2**16 + 1;  // the modulus
  z = c @@ [17..32];  // return least sig 16 bits of product
 };
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Multiplication (More Efficient)
ideaMul: ([16],[16]) -> [16];
ideaMul (x,y) = z
 where {
  a,b,c,m : [32];
  a = 0 # x; // pad to 32 bits
  b = 0 # y; // pad to 32 bits
  c = if (a == 0)
      then m - b // 2**16 * b = m - b (mod m)
      else if (b == 0)
           then m - a // 2**16 * a = m - a (mod m)
           else (a * b) % m;
  m = 2**16 + 1; // the modulus
  z = c @@ [16..31];   // return least sig 16 bits of product
 };
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Key Schedule
encryptionKeySchedule: [128] -> [52][16];
encryptionKeySchedule key = sks'
 where {
  ks = [key] # [| k <<< 25 || k <- ks |];
  ks': [7][128];
  ks' = ks @@ [0 .. 6];

  sks: [56][16];
  sks = join [| splitBy (8,k) || k <- ks' |];
  sks': [52][16];
  sks' = sks @@ [0..51];       };
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Block Encryption
encryptBlock: ([64],[52][16]) -> [64];
encryptBlock (pt,sks) = join ct
 where {
  ks': [48][16];
  ks' = sks @@ [0 .. 47];
  ks: [8][6][16];
  ks = split ks';
  pt': [4][16];
  pt' = split pt;
  ps: [9][4][16];
  ps = [pt'] # [| ideaRound (p,k) || p <- ps
                                  || k <- ks |];
  ct' = ps @ 8;   // more...
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Encryption continued
  x0,x1,x2,x3: [16];
  x0 = ct' @ 0;
  x1 = ct' @ 1;
  x2 = ct' @ 2;
  x3 = ct' @ 3;
  k0 = sks @ 48;
  k1 = sks @ 49;
  k2 = sks @ 50;
  k3 = sks @ 51;
  y0 = ideaMul (x0,k0);
  y1 = x2 + k1;
  y2 = x1 + k2;
  y3 = ideaMul (x3,k3);
  ct = [y0 y1 y2 y3];             };

Order of x’s is
switched
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Each Round
ideaRound: ([4][16],[6][16]) -> [4][16];
ideaRound ([x0 x1 x2 x3],[k0 k1 k2 k3 k4 k5]) = [y0 y1 y2 y3]
 where {
  t0,t1,t2,t3,t4,t5,t6,t7,t8,t9: [16];
  t0 = ideaMul (x0,k0);
  t1 = x1 + k1;
  t2 = x2 + k2;
  t3 = ideaMul (x3,k3);
  t4 = t0 ^ t2;
  t5 = t1 ^ t3;
  t6 = ideaMul (t4,k4);
  t7 = t5 + t6;
  t8 = ideaMul (t7,k5);
  t9 = t6 + t8;

y0,y1,y2,y3: [16];
  y0 = t0 ^ t8;
  y1 = t2 ^ t8;
  y2 = t1 ^ t9;
  y3 = t3 ^ t9;
 };
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Style Critique
� Breaking down into tiny steps

� Can help debugging
� Gives an “assembly code” result

� Abstraction
� Name important concepts
� Keep separate concepts separate

� Redo IDEA using more abstraction
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Multiplication
ideaMul': ([16],[16]) -> [16];
ideaMul' (a,b) = to16 ((to33 a * to33 b) % modulus);

modulus = 2**16 + 1; // Modulus for multiplication

to33 : [16] -> [33];
to33 x = if (x == 0) 
         then 2**16   // if 0 use 2**16
         else 0 # x; // otherwise pad with 0s

to16 z = z @@ [w-16 .. w-1]
  where {w = width z};
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Multiplication (more efficient)
ideaMul: ([16],[16]) -> [16];
ideaMul (a,b) // 2**16 * b = m - b (mod m)
  = to16 (if (a == 0) then modulus - to32 b
          else
          if (b == 0) then modulus - to32 a
          else
            (to32 a * to32 b) % modulus
          );

to32 : [16] -> [32];
to32 x = 0 # x; // pad to 32 bits
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Key Expansion
encryptionKeySchedule: [128] -> [52][16];
encryptionKeySchedule key = sks @@ [0..51]
 where {
  ks: [inf][128];
  ks = [key] # [| k <<< 25 || k <- ks |];

  sks: [inf][16];
  sks = join [| splitBy (8,k) || k <- ks |];
 };
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Block Encryption
encryptBlock: ([64],[52][16]) -> [64];
encryptBlock (pt,sks) = join ct
 where {
  ks: [8][6][16];
  ks = split (sks @@ [0 .. 47]);
  pt': [4][16];
  pt' = split pt;

  ps: [9][4][16];
  ps = [pt'] # [| ideaRound (p,k) || p <- ps
                                  || k <- ks |];
  ct = whiten (switch (ps @ 8), sks@@[48..51]);
 };
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Helper Functions

whiten : ([4][16],[4][16]) -> [4][16];
whiten ([x0 x1 x2 x3], [k0 k1 k2 k3])
  = [ (ideaMul(x0,k0))     (x1 + k1)
         (x2 + k2)      (ideaMul(x3,k3)) ];

switch [a b c d] = [a c b d];
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Each Round

ideaRound: ([4][16],[6][16]) -> [4][16];
ideaRound (x,k) = switch t ^ [r r s s]
 where {
  t = whiten (x,k@@[0..3]);

  p = ideaMul (t@0 ^ t@2, k@4);
  q = p + (t@1 ^ t@3);
  r = ideaMul (q,k@5);
  s = p + r;
 };
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Cryptol Idiom: For Loops

� Factors
� Capture the body of the for-loop as a function
� Identify the state variables
� Define a recurrence

� Example: Sum the elements of a matrix:

sum xs = sums @ (width xs - 1)
  where
    { sums = [|  x + y || x <- xs
                       || y <- [0] # sums |];
    };
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add32 0xB4 0x3A           0x3A

Size Polymorphism

How many
bits am I?

Aha!
Must be
32 bits
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Size Polymorphism

x = 0x3A

How many
bits am I?

At least 6
bits ...

x : {a} (a >= 6) => [a]
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Shape Polymorphism

swab [a b c d] = [d c b a]

What types do
I handle?

Four of
something

...

Four of
something
to four of
the same
thing...

swab : {a} [4]a -> [4]a
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Controlling Polymorphism

xor(xs, ys) = [| (x & ~y) | (~x & y)
                  || x <- xs
                  || y <- ys |]

xor : {a b c}
   ([a]b,[c]b) -> [min(a,c)]b
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Controlling Polymorphism

xor : {a} ([a], [a]) -> [a]
xor(xs, ys) = [| (x & ~y) | (~x & y)
                  || x <- xs
                  || y <- ys |]
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A Cryptol Idiom: Padding

� Key padding for MD5:

pad : {a} (6 >= a) =>
      [a] -> [512*((a+65+511)/512)]

pad key = key # [True] # 0 # size
  where

  size : [64]
    size = width key

0 can have any
size, so fills out
to satisfy the

type constraint
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Split

� Common task
� Treat a 32 bit word as 4 bytes

toBytes : [32] -> [4][8];
toBytes x = split x;

� The split function has a very general type
� Can be used to perform any split

split : {a b c} [a*b]c -> [a][b]c
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Join

� Converse task
� Treat 4 bytes as a 32 bit word

fromBytes : [4][8] -> [32];
fromBytes x = join x;

� The join function has a very general type
� Can be used to perform any join

join : {a b c} [a][b]c -> [a*b]c
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General reshaping

� Composite task
� Treat four 12-bit words as three 16 bit words

change : [4][12] -> [3][16];
change x = split (join x);

� The general version of this has a very general type
� Can be used to perform any regular rearranging

reshape : {a b c d e}
          (d*e == a*b) => [a][b]c -> [d][e]c;
reshape x = split (join x);
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Transpose

� Transpose an nxm structure into an mxn structure
� From   [[1 2 3] [4 5 6]]
� To     [[1 4] [2 5] [3 6]]

transpose xss
= [| col (j,xss)
  || j <- [0 .. (width (xss @ 0) - 1)] |];

col (j,xss)
= [| (xss @ i) @ j
  || i <- [0 .. (width xss - 1)] |];
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Executing Cryptol

� A Cryptol interpreter

� A compiler that translates Cryptol specifications into
executable code
� Reference implementations currently

� Cryptol implementations of the AES algorithms shall be
fast enough for checking the AES Known Answer Tests
and Monte Carlo Tests
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One Specification,
Multiple Implementations

� Fundamental DSL concept:

Distinguish between model and rendition

� Cryptol specifications are designed to be independent of
the target language
� Interpret specification
� Reference implementation
� Generate C code or Java
� Machines with alternate word sizes, endian-ness
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