
1

Cryptol on FPGAs

John Launchbury

Galois Connections Inc

john@galois.com

GALOISCONNECTIONS

Satnam Singh

Xilinx Inc

satnam@xilinx.com

GALOISCONNECTIONS

Plan

• Cryptol domain-specific language

• The FPGA opportunity

• Lava and Jbits

• Review

2

GALOISCONNECTIONS

Problem: Crypto-algorithm
Verification and Validation

• Managing assurance in face of exploding
need and complexity
– Variety of target architectures
– Legacy algorithms
– Variety of requirements
– Validation is laborious
– Requires skills in both math and programming

• Not just the NSA
– “25% of algorithms submitted for FIPS validation

had security flaws”
Annabelle Lee, Director NIST CMVP

March 26, 2002

GALOISCONNECTIONS

C as a specification language

4Executable and less ambiguous than pseudo code
8 But not formal and unambiguous

– E.g. meaning of shifts in C is left up to the machine

8 Forced to conform to machine model (word size,
sequential, etc)

8 Two words: buffer overflow!
8 Lots of administrative overhead

– Memory management
– Working around word size limitations
– …

3

GALOISCONNECTIONS

Overhead in Cstatic void Rc6ComputeKeySchedule(BYTE* key, int keyLengthInBytes,
 unsigned long* S)
{
 unsigned long L[(255+4-1)/4];
 const int t = 2+2*ROUNDS+2;
 int count;
 int u;
 int i,j;
 unsigned long A,B;
 int startOfExtraDword, numberOfExtraBytes;
 int c = (keyLengthInBytes+4-1)/4;
 if (c == 0)
 c = 1;
 for (count = 0; count < c; count++)
 L[count] = 0;
 for (count = 0; count < keyLengthInBytes/4; count++)
 L[count] = LoadDword(key+count*4);
 startOfExtraDword = keyLengthInBytes & 0xfffffffc;
 numberOfExtraBytes = keyLengthInBytes & 0x3;
 if (numberOfExtraBytes > 0) {
 L[c-1] = (unsigned long) key[startOfExtraDword];
 if (numberOfExtraBytes > 1) {
 L[c-1] |= (((unsigned long) key[startOfExtraDword+1]) << 8);
 if (numberOfExtraBytes > 2)
 L[c-1] |= (((unsigned long) key[startOfExtraDword+2]) << 16);
 }
 }
 S[0] = P32;
 for (count = 1; count < t; count++)
 S[count] = S[count-1]+Q32;
 u = 3*((c>t) ? c : t);
 i = j = 0;
 A = B = 0;
 for (count = 1; count <= u; count++) {
 unsigned long sum;
 sum = A+B;
 S[i] += sum;
 A = S[i] = ROTL(S[i], 3);
 sum = A+B;
 L[j] += sum;
 B = L[j] = ROTL(L[j], sum);
 i = (i+1) % t;
 j = (j+1) % c;
 }
}

rc6ks key = split (rs >>> (v - 3 * nk))
 where {
 c = max (1, (width key + 3) / (w / 8));
 v = 3 * max (c, nk);
 initS = [pw (pw+qw) ..] @@ [0 .. (nk-1)];
 padKey : [4*c][8];
 padKey = key # zero;
 initL : [c][w];
 initL = split (join padKey);

 ss = [| (s+a+b) <<< 3 || s <- initS # ss
 || a <- [0] # ss
 || b <- [0] # ls |];
 ls = [| (l+a+b) <<< (a+b) || l <- initL # ls
 || a <- ss
 || b <- [0] # ls |];
 rs = ss @@ [(v-nk) .. (v-1)];
 };

Reference RC6 key schedule in C

RC6 key schedule in Cryptol

This part corresponds
to the Cryptol code
on the right

GALOISCONNECTIONS

Alternative: Specification
Language and Formal Tools

• Domain-specific language for crypto
specification
– Model crypto algorithm
– Natural – easy to express
– Declarative
– Clear and unambiguous

• Developed by Galois
– Designed with feedback from NSA

cryptographers
– In use at NSA, Certicom and General Dynamics
– Continued funding from NSA

CryptolCryptol
The Language of

Cryptography

4

GALOISCONNECTIONS

One Specification - Many Uses

Design
Validate

Build

Cryptol
Interpreter

Cryptol
Interpreter

Domain-Specific
Design Capture

w0=u-I*I modp + u-I*wl mod p
s=f*(w0 +pw2) (mod q)

Assured
Implementation

Cryptol
Tools

Cryptol
Tools

Verify crypto
implementations

Models and
test cases

Special purpose
processor

FPGA(s)

C or Java

Target
HW code

GALOISCONNECTIONS

Implementation:
Testing Cryptol

Tools

Cryptol
Tools

Test
cases

CryptolCryptol
ReferenceReference

SpecSpec

Hand coded
Implementation

Reference
Test

Cases

Test Execution

Validated
Implementation

• Generate large
number of tests

• Generate
intermediate test
vectors to simplify
debugging

5

GALOISCONNECTIONS

Implementation:
Verification

Model of
Reference

Model of
Implementation

Cryptol
Tools

Cryptol
Tools

Models

CryptolCryptol
ReferenceReference

SpecSpec

BDDs
CHAFF

ACL2

Hand-coded
Implementation

• Model checking now in development
• Will enable formal verification between

Reference and Implementation
• Much higher assurance of correctness

GALOISCONNECTIONS

Implementation:
Code Generation Special purpose

processor

FPGA(s
)

C or Java

Cryptol
Tools

Cryptol
Tools Target

HW code

A single correct, executable Cryptol specification
can be deployed to a variety of target platforms…

FPGA

CryptolCryptol
ReferenceReference

SpecSpec

Special purpose
processor

• One specification to ‘get right’
• Many targets for use

Java

CC

future

6

GALOISCONNECTIONS

Crypto-algorithm domain

• Crypto Domain Concepts
– Mathematical equational definitions
– Data: bits, bit-vectors (words), vector structures, etc.
– Flexible views of data, high-level operations
– Coinductive streams

• Cryptol
– Language of Sequences

• Bit sequences, “words”
• Word sequences, “blocks”
• Sequences of sequences, “matrices”

– Finite and infinite sequences
– Rich set of operators

Cryptol states what
the sequence is.
Computationally,

sequences may exist
in time, or in space

GALOISCONNECTIONS

Sequence Operators

• Taking sequences apart
– Into n segments, or

– With n in each segment

• Joining sequences together

• Dropping a sequence prefix

• Transpose a sequence of sequences

• Reversing a sequence

• Sequence lookup

[1 2] # [4 6 3]

 = [1 2 4 6 3]

7

GALOISCONNECTIONS

Multiple views

GALOISCONNECTIONS

Multiple views

8

GALOISCONNECTIONS

Sequence Comprehensions

• Borrowed the comprehension notion from set
theory

{ 2x+3 | x Œ {1, 2, 3, 4} } = {5, 7, 9, 11}

Adapted to sequences

[| 2*x + 3 || x <- [1 2 3 4] |]
 = [5 7 9 11]

GALOISCONNECTIONS

Recurrence

• Textual description of shift circuits
– Follow mathematics: use stream-equations

• Stream-definitions can be recursive

ints = [0] # [| y+1 || y <- ints |];

0ints

+1

9

GALOISCONNECTIONS

More Complex Stream Equations

as = [Ox3F OxE2 Ox65 OxCA] # new;
new = [| a ^ b ^ c || a <- as
 || b <- drop(1,as)
 || c <- drop(3,as)|];

3Fas E2

^

65 CA

^

new

GALOISCONNECTIONS

RC6 Key Expansion
• Original specification is written in terms of arrays and

updates
– Key expansion code appears entirely symmetrical

– Cryptol exposes non-symmetry

ss = [| (s+a+b) <<< 3 || s <- initS # ss
 || a <- [0] # ss
 || b <- [0] # ls |];

ls = [| (l+a+b)<<<(a+b) || l <- initL # ls
 || a <- ss
 || b <- [0] # ls |];

10

GALOISCONNECTIONS

“Circuit” Diagram

0

0

ss

ls

initS

initL

a
s

b

b
a

l

GALOISCONNECTIONS

Modes: Electronic code book

ct = [| encrypt (x, key) || x <- pt |]

 enckey

11

GALOISCONNECTIONS

Cipher Block Chaining

ct = [iv]
 # [| encrypt (x^y, key) || x <- pt
 || y <- ct |]

 enckey^ iv

GALOISCONNECTIONS

Key Observation

• Sequences are descriptions only

• Implementation of sequences can be:
– Laid out in time

• Loops and/or state machines

– Laid out in space
• Parallel and/or pipeline

– Or a mixture of both
• The mathematical specification is the same

Sequentialization in Cryptol comes only from
data-dependency — just like hardware

12

GALOISCONNECTIONS

Cryptol Types

• Types express size and shape of data

[[0x1FE 0x11] [0x132 0x183]
 [0x1B4 0x5C] [0x26 0x7A]] has type [4][2][9]Bit

• Strong typing
– The types provide mathematical guarantees on

interfaces

• Type inference
– Use type declarations for active documentation
– All other types computed

GALOISCONNECTIONS

Current Cryptol System

• Programming environment
– Interpreter-based

– Tracing support

– Test-vector generation

• Compilation
– Via Haskell with interface to C

– Partial Compilation directly to C

13

GALOISCONNECTIONS

FPGAs: The Opportunity

• Configurable hardware
– Very fast

– Hugely parallel resource

– Grows with Moore’s Law

• Ubiquitous FPGAs in the future?
– Large FPGA farms connected to network servers

– General FPGA resource-board attached to
computation engines

GALOISCONNECTIONS

The Crypto-domain

• FPGAs offer tremendous potential in
cryptography
– Highly parallel encryption/decryption
– Highly parallel crypto-analysis

• Key search

. . .

• Natural match between Crypto and FPGAs
– Manipulation of bit sequences
– Parallelism

14

GALOISCONNECTIONS

The Problem

FPGAs are difficult to use:

• FPGA tools are designed for “hardware-engineering”
not “software-engineering”

• Traditional software languages have inappropriate
sequentialization built-in

Mismatch in both directions

GALOISCONNECTIONS

Key Idea

Take the declarative Crypto-specification language
Cryptol, and compile right down to FPGAs

Natural for
crypto-mathematiciansComputationally

neutral

Complete control
of compilation

15

GALOISCONNECTIONS

FPGA Compilation Route

Prime choice.

Adapt current
Cyptol-to-C compiler
to produce

1. Lava, and

2. JBits

Cryptol

Lava

EDIF

JBits

Lava system

Compile

GALOISCONNECTIONS

Naturally Matched Technologies
• Cryptol

– Language designed for crypto-mathematicians
– Generate finite-state machine descriptions
– Formal semantics

• Lava
– Language designed for 2D FPGA specification
– High-level and declarative
– Powerful placement computation and control
– Formal semantics
– Generates fully mapped EDIF

• Jbits
– Java API designed for packing and routing FPGAs
– Produce FPGA configuration bit-stream
– Lightweight system

16

GALOISCONNECTIONS

Lava specs based on cells

• Family of operators for connecting cells

• Cells have relative locations

GALOISCONNECTIONS

Lava 2D Cells

• 2D relative positions

• Cells have types

• Powerful data abstraction

17

GALOISCONNECTIONS

Apply to larger pieces

GALOISCONNECTIONS

Memory-Sum Circuit

18

GALOISCONNECTIONS

Butterfly

• Complex recursively-defined
networks of cells

• Provably correct

GALOISCONNECTIONS

JBits Performance

• Lava to Bitstream via JBits
– 300,000 logic gates in less than 10

seconds for XCV300

• Modifying single gate at run-time
– 172 ms

19

GALOISCONNECTIONS

The missing piece

• Cryptol to Lava compiler
– Decisions on parallelism of sequences

• Space/time tradeoffs

– Constant folding and partial evaluation
– Pipeline-introduction transformations
– Gate-level realization of primitive operations

• Algebraic techniques applicable throughout
– Provides formal justification for compilation

GALOISCONNECTIONS

Why it can be built…

• Constrained domain of source language
– Finite designs

• No artificial sequentiality to be removed from
the source language
– FPGAs provide a way to realize Cryptol’s parallelization

potential
– Cryptol provides a way to realize FPGA’s parallelization

potential

• Algebraic transformation methods are
applicable throughout
– Formal (semantics-based) technique for reshaping

programs and circuits

20

GALOISCONNECTIONS

Benefits

• FPGA resources become available to crypto-
mathematicians
– Not just to hardware engineers

• Low barrier-to-entry for FPGA use
– Cryptol spec may have been developed for other

purposes
– Standard libraries of Cryptol specifications
– FPGA implementation is a small delta for the user

• Cross-compilation development scenario
– Develop specs on conventional hardware
– Execute on FPGA

GALOISCONNECTIONS

Domain Specific Language
Approach to V & V

• Domain Specific
– Naturally understandable to developers
– Simplifies expression, inspection, reuse

• Executable
– Run tests and debug for correctness
– Generate test cases

• Declarative
– Not implementation-specific, concise
– Useful for multiple purposes – test, generation, model building, etc.
– Highly retarget-able to any architecture

• Unambiguous
– Formal basis
– Precise syntax and semantics
– Independent of underlying machine models

