
What is Cryptol?
Cryptol is a domain-specific language for specifying cryptographic
algorithms. A Cryptol implementation of an algorithm resembles its
mathematical specification more closely than an implementation in a
general purpose language.	

Here is a comparison of a portion of the SHA-1 hash function
specification and its representation in Cryptol.	

Cryptol SHA-1 implementation	

The Cryptol implementation unambiguously captures both the
English description and the mathematical specification below:!

SHA-1 specification	

From page 10 of NIST 180-4 (http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf).	

Write, Execute, Validate, and Verify
Cryptographic Specifications
Recent news has highlighted the importance of correct cryptographic
implementations for everyone. Previously, the challenge has been
that cryptographic algorithms were written in academic papers in a
non-executable mathematical notation. Someone often writes a
reference implementation which does not usually look very much like
the math. People then use or optimize that reference implementation
in their applications, but there has not been an easy way to check
those implementations against the mathematical specification.	

Using a specification in Cryptol, programmers can generate their
own test vectors, generate counter-examples, prove theorems, and
(using other tools, like Galois’ SAW, illustrated below) verify
equivalence to their own programs, or even generate code or
hardware from the specification.	

Cryptol version 2 is now released as open source under a 3-clause
BSD license on GitHub (http://cryptol.net/). Our goal is that
it becomes a widely adopted standard for expressing, validating, and
verifying cryptographic algorithms.!

Cryptol’s relationship with the Software Assurance Workbench (SAW)!

Changes from version 1
Cryptol version 1 has been in use for a number of years. Cryptol
version 2 makes some changes based on suggestions from the user
community and lessons learned by the Cryptol design team. These
include syntax changes and some extensions to the type system.
Perhaps the the most disruptive change for current Cryptol
programmers is that Cryptol version 2 interprets sequences in “big
endian” mode, rather than “little endian.”!

Summary of Syntax Changes
Here is a short summary of the syntax changes made in Cryptol
version 2 based upon user community input:!

New Features in Cryptol version 2
• Layout: Version 1 of Cryptol used curly braces to delimit blocks

and semicolons to separate expressions. In version 2, Cryptol has
layout-based syntax which uses indentation to delimit blocks and \
to indicate line continuation. 
Here is the caesar cipher specified in the old and the new layouts:!

• Multi-way If-Then-Else: Cryptol version 2 supports a “case-
statement”-like multi-way branch: x = if y % 2 == 0 then 1  
 | y % 3 == 0 then 2  
 | y % 5 == 0 then 3  
 else 7"

• First-class Type Variables: Function definitions can now be
parameterized over type-level constants, thus Cryptol is proper
size-polymorphic dependently typed language. Type-level
constants can be instantiated either positionally or by name. 
For example, the built-in take function in Cryptol has the following
signature and definition: take: {front, back, elem} (fin front) =>  
 [front + back] elem -> [front] elem  

 take (x # _) = x 
This lets us call it like take`{3}xs, which means the same thing
as take`{front=3}xs, which means the same thing as the
Cryptol version 1 call take(3,xs).	

Cryptol is Open Source
By open sourcing Cryptol we hope that educators, applied
cryptographers, and crypto system implementers will adopt Cryptol
as a de facto standard for the specification and verification of
cryptographic algorithms. 
 
With the community’s help, we plan to extend Cryptol to specify and
reason about a broader scope of cryptographic systems, including
protocols. Your ideas and contributions are welcome!

Cryptol version 2  
The Language of Cryptography

Sponsored by the Trusted Systems Research Group 
For more information, visit http://cryptol.net/

f : ([8], [32], [32], [32]) -> [32]  
f (t, x, y, z) =  
 if (0 <= t) && (t <= 19) then (x && y) ^ (~x && z)  
 | (20 <= t) && (t <= 39) then x ^ y ^ z  
 | (40 <= t) && (t <= 59) then (x && y) ^ (x && z) ^ (y && z)  
 | (60 <= t) && (t <= 79) then x ^ y ^ z  
 else error "f: t out of range"

 10

4. FUNCTIONS AND CONSTANTS

4.1 Functions
This section defines the functions that are used by each of the algorithms. Although the SHA-
224, SHA-256, SHA-384,SHA-512, SHA-512/224 and SHA-512/256 algorithms all use similar
functions, their descriptions are separated into sections for SHA-224 and SHA-256 (Sec. 4.1.2)
and for SHA-384, SHA-512, SHA-512/224 and SHA-512/256 (Sec. 4.1.3), since the input and
output for these functions are words of different sizes. Each of the algorithms include Ch(x, y, z)
and Maj(x, y, z) functions; the exclusive-OR operation (�) in these functions may be replaced
by a bitwise OR operation (�) and produce identical results.

4.1.1 SHA-1 Functions
SHA-1 uses a sequence of logical functions, f0, f1,…, f79. Each function ft, where 0 d t < 79,
operates on three 32-bit words, x, y, and z, and produces a 32-bit word as output. The function ft
(x, y, z) is defined as follows:

 Ch(x, y, z)=(x� y) � (�x� z) 0 d t d 19

 Parity(x, y, z)=x � y � z 20 d t d 39
 ft (x, y, z) = (4.1)
 Maj(x, y, z)=(x� y) � (x� z) � (y� z) 40 d t d 59

 Parity(x, y, z)=x � y � z 60 d t d 79.

4.1.2 SHA-224 and SHA-256 Functions
SHA-224 and SHA-256 both use six logical functions, where each function operates on 32-bit
words, which are represented as x, y, and z. The result of each function is a new 32-bit word.

),,(zyxCh =)()(zxyx ���� (4.2)
),,(zyxMaj =)()()(zyzxyx ����� (4.3)

 ¦ }256{

0
)(x = ROTR 2(x) � ROTR 13(x) � ROTR 22(x) (4.4)

 ¦ }256{

1
)(x = ROTR 6(x) � ROTR 11(x) � ROTR 25(x) (4.5)

)(}256{
0 xV = ROTR 7(x) � ROTR 18(x) � SHR 3(x) (4.6)

)(}256{
1 xV = ROTR 17(x) � ROTR 19(x) � SHR 10(x) (4.7)

Summary of Changes

Cryptol version 2 Cryptol version 1 Summary

[False, True, True] (==3) [False True True] (== 6) Big-endian word representation

[1, 1, 2, 3, 5] [1 1 2 3 5] Commas separate sequence entries

x = 1 x = 1; Uses layout instead of ;’s and {’s

[x | x <- [1 .. 10]] [| x || x <- [1 .. 10] |] Cleaner sequence constructor syntax

f : {a,b} a -> b f : {a b} a -> b Commas separate type variables

take‘{1} xs take(1, xs) First-class type parameters

x ˆˆ 2 x ** 2 ˆˆ for exponentiation

<| xˆˆ2 + 1 |> <| xˆ2 + 1 |> Polynomial exponentiation now uniform

[0 ..]:[_][8] take(255, [0 ..]:[inf][8]) Both produce [0 .. 255]

[0 ...]:[inf][8] [0 ..]:[inf][8] Both produce [0 .. 255](repeated)

[9, 8 .. 0] [9 -- 0] Step defines decreasing sequences

&&, ||, ˆ &, |, ˆ Boolean operator syntax

property foo xs=... theorem foo: {xs}. xs==. . . Properties replace theorems (see below)

1

LSS >
(C / LLVM)

JSS >
(Java)Cryptol >

SawScript >

SawCore Library

Software Assurance Workbench

VSS >
(FPGA)

caesar : {n} ([8], String n) -> String n;"
caesar (s, msg) = [| shift x || x <- msg |] where {"
 map = ['A' .. 'Z'] <<< s;"
 shift c = map @ (c - 'A');"
};"

caesar : {n} ([8], String n) -> String n"
caesar (s, msg) = [shift x | x <- msg]"
 where map = ['A' .. 'Z'] <<< s"
 shift c = map @ (c - 'A')

SOME RIGHTS RESERVED

BSD
CC

http://cryptol.net/
http://cryptol.net/

