
A Type-Safe Dialect of C

Greg Morrisett
Harvard University

Collaborators: D.Grossman, T.Jim, M.Hicks

March 2005 2

C is a terrible language:
• Must bypass the type system to do simple things

(e.g., allocate and initialize an object).
• Libraries put the onus on the client to do the “right

thing” (e.g., check return codes, allocate data of
right size, pass in array sizes, etc.).

• Manual memory management leads to leaks, data
corruption.

• No information at runtime to do needed
checks.(e.g., printf is passed arguments of the
right type).

• "Portability" is in the #ifdef's, #defines, and
Makefiles.

March 2005 3

But C Is Also Very Useful:
Almost every critical system is coded in C:

• ported to lots of architectures.
• low-level control over data structures, memory

management, instructions, etc.
• features useful for building device derivers,

operating systems, protocol stacks, language
runtimes, etc.

• the portability of the world is encoded in .h files
Questions:

• How do we achieve type safety for legacy C code?
• What should a next-generation C look like?

March 2005 4

A Number of Recent Projects:
• LCLint, Splint [Evans]
• ESC M3/Java [Leino et al.]
• Prefix, Prefast [MS]
• SLAM [Ball, Rajamani]
• ESP [Das, Adams, Jagannathan]
• Vault, Fugue [Fahndrich, DeLine]
• Metal [Engler]
• CCured [Necula]

March 2005 5

General Flavor
• Find bugs & inconsistencies in real source code.

• e.g., Windows, Linux, Office, GCC, etc.
• buffer overruns, tainted input, protocol violations, etc.

• A variety of analysis techniques.
• ast analysis, dataflow analysis, type inference, constraint

solving, model checking, theorem proving, spell checking,...
• Key needs:

• minimize "false positives"
• tool won't be used if it's not finding real bugs.
• skip soundness, add annotations, add run-time checks, etc.

• attention to scale
• modular analysis, avoiding state explosion, etc.

• good user interface
• e.g., minimal error traces, integration with build system, etc.

March 2005 6

The Cyclone Project
Cyclone is a type-safe dialect of C:

• primary goal: guarantee fail-stop behavior.
• if we can't verify statically, we verify it dynamically.
• whether or not we issue a warning is heuristic.

• second goal: retain virtues of C
• syntax and semantics in the spirit of the language.
• avoid hidden state (i.e., type tags, array bounds).
• make it easy to interoperate with C (e.g., <kernel.h>).
• ultimately: attractive for writing systems code.

• final goal: keep verification modular and scalable.
• want this to be used as part of every build.
• local analysis and inference only.
• defaults, porting tool to minimize annotation burden.

March 2005 7

Cyclone Users
• In-kernel Network Monitoring [Penn]
• MediaNet [Maryland & Cornell]
• Open Kernel Environment [Leiden]
• RBClick Router [Utah]
• xTCP [Utah & Washington]
• Lego Mindstorm on BrickOS [Utah]
• Cyclone on Nintendo DS
• Cyclone compiler, tools, & libraries

• Over 100 KLOC
• Plus many sample apps, benchmarks, etc.
• Good to eat your own dog food…

March 2005 8

This Talk
• A little bit about the Cyclone design:

• Refining C types
• Flow analysis
• Type-safe Manual Memory management

• Lessons learned:
• Theory vs. Practice
• Why you shouldn’t trust tools

• Where we’re heading:
• Open, trustworthy analysis framework

March 2005 9

Hello World in Cyclone
#include <stdio.h>

int main(int argc, char*@zeroterm *@fat argv)
{

if (argc != 2) {
fprintf(stderr,"usage: %s <name>\n",argv[0]);
exit(-1);

}
printf("Hello, %s.\n",*(++argv));
return 0;

}

March 2005 10

Fat Pointers:
To support dynamic checks, we must insert

extra information (e.g., bounds for an array):

This is similar to what’s done in Java, but we
need more information to support pointer
arithmetic.

March 2005 11

Avoiding Overheads:
Dynamic checks make porting from C easy and

our static analysis eliminates much of the
overhead.

But often programmers want to ensure there will
be no overhead and no potential failure.

To achieve this, programmers can leverage
Cyclone’s refined types and static assertions.

March 2005 12

Pointer Qualifiers Clarify
Thin pointers: same representation as C, but

restrictions on pointer arithmetic.

char *: a (possibly NULL) pointer to a character.
char *@notnull: a (definitely not NULL) pointer to a character.
char *@numelts{c}: pointer to a sequence of c characters.
char *@zeroterm : pointer to a zero-terminated sequence.

Fat pointers: arbitrary arithmetic but the
representation is different (3 words):

char *@fat : a "fat" pointer to a sequence of characters.
numelts(s) : returns number of elements in sequence s

March 2005 13

Subtyping Is Crucial:
Some Subtyping:
@numelts{42} <= @numelts{3}
@notnull <= @nullable
(mutable) <= @const

Some No-check Coercions:
@thin @numelts{42} <:= @fat
@thin @zeroterm <:= @fat @zeroterm
@fat @zeroterm <:= const @fat @nozeroterm

Some Checked Coercions:
@fat <#= @numelts{42}
@nullable <#= @notnull

March 2005 14

Determining Qualifiers
Programmers:

• provide qualifiers for procedure interfaces
Compiler:

• infers qualifiers for local variables using a
constraint-based inference algorithm.

• inserts coercions to adjust where necessary and
possible.

• emits warnings for (most) checked coercions.
Porting Tool:

• global analysis tries to infer qualifiers, using only
equality constraints (linear time).

• may be unsound(!) but compiler will flag problems

March 2005 15

Checked Coercions & Warnings
In Cyclone stdio library:

FILE* fopen(const char *,const char *);
int getc(FILE *@notnull);

A client of the library:
FILE *f = fopen("foo.txt", "r");
c = getc(f); Warning: argument might be NULL –

inserting runtime check

March 2005 16

Should Be Able to Avoid Warnings:
1.cyclone -nowarn
2.FILE @f = (FILE @)fopen("foo.txt", "r");
c = getc(f)

3.FILE *f = fopen("foo.txt", "r");
if (f == NULL) {
perror("cannot find foo.txt\n");
exit(-1);

}
c = getc(f)

March 2005 17

Flow Analysis
Simple intraprocedural flow-sensitive, path-

insensitive analysis used to determine:
• whether pointer variables are NULL.

• used to avoid NULL checks, warnings.

• whether variables and fields within data structures
are initialized.

• warning on "bits-only" types, error otherwise.

• unsigned integer inequalities on variables.
• used to avoid bounds checks, warnings.

• aliasing (essentially k-level with k = 2).
• "noreturn" attribute (e.g., calls exit).

March 2005 18

An Example:
int strcmp(const char *@fat s1,

const char *@fat s2) {
unsigned n1 = numelts(s1);
unsigned n2 = numelts(s2);
unsigned n = (n1 <= n2) ? n1 : n2;
for (int i = 0; i < n; i++) {
... s1[i] ... s2[i] ...

}
...

}
The analysis is not able to prove
that i is in bounds, so it inserts
run-time tests...

March 2005 19

Using Static Asserts
int strcmp(const char *@fat s1,const char *@fat s2) {
unsigned n1 = numelts(s1);
unsigned n2 = numelts(s2);
unsigned n = (n1 <= n2) ? n1 : n2;
@assert(n <= n1 && n <= n2);
for (int i = 0; i < n; i++) {
... s1[i] ... s2[i] ...

}
...

} Here, we have
n1 == numelts(s1) &
n <= n1 & i < n

March 2005 20

In Practice:
• Initial code has lots of dynamic checks.

• Choice of warning levels reveals likely points of
failure.

• Two options:
• Turn up knob on analyses

• e.g., explore up to K paths
• Refine types, add assertions

• Programmer intensive

In either case, programmer views task as
optimizing code when in fact, they’re
providing the important bits of a proof of
safety.

March 2005 21

One Big Wrinkle: Order
Order of evaluation is not specified for many

compound expressions.

Consider: e(e1,e2,...,en)
• Worst case: compiler could evaluate each

expression in parallel.
• Even if you assume compiler does some

permutation, you still have (n+1)! orderings.
• Could calculate all flows and then join, but that's

too expensive in practice.

March 2005 22

Solutions:
Originally, we had a sophisticated, iterative

analysis to deal with the ordering issue.
• Complicated, difficult to maintain.

Now we force the order of evaluation.
• Greatly simplifies the analysis.
• Very little perceived loss in performance.
• But confuses GCC in some instances (e.g., self-

tail calls.)
Moral: shouldn’t be afraid to change the

language to suit verification task.

March 2005 23

Other Cyclone Features:
• Unions

• union Foo {int x; float y;};
• can read or write either element

• union Bar {int *x; float y;};
• can write either element, but only read float

• @tagged union Baz {int *x; float y;};
• can read/write, but extra tag is inserted

• Parametric Polymorphism, Pattern-Matching,
Existential Types, and Exceptions

• Limited dependent types over integer
expressions (a la Dependent ML)

• Region-based memory management.

March 2005 24

Region Goals
• Provide some mechanism to avoid GC.

• no hidden tags.
• no hidden pauses.
• small run-time.
• but ensure safe pointer dereferences.
• scalable and modular analysis.

• Regions (a la Tofte & Talpin) fit the bill.
• group objects with similar lifetimes into regions.
• put region names on pointer types (int *`r).
• track whether or not a region is live (effects).
• allow dereferencing a pointer only if region is live.

March 2005 25

Runtime Organization

Regions are linked
lists of pages.

Arbitrary inter-region
references.

Similar to arena-style
allocators.

runtime stack

March 2005 26

The Good News
Stack allocation happens a lot in C code.

• Thread local
• Cheap

Lexical region allocation works well for:
• "callee" allocates idioms (e.g., rgets)
• temporary data (e.g., environments)

Automatic deallocation.
All checks are done statically.
Real-time memory management.

March 2005 27

The Bad News:
LIFO region lifetimes are too strict.

• No “tail-call” for regions.
• Lifetimes must be statically determined.
• Consider a server that creates some object upon

a request, and only deallocates that object upon
a subsequent request…

Creating/destroying a region is relatively
expensive compared to malloc/free.

• Must install exception handler.
• Makes sense only when you can amortize costs

over many objects.

March 2005 28

To Address Shortcomings
• Unique pointers

• Lightweight when compared to a region.
• Can deallocate (free) at will.
• But you can’t make a copy of the pointer.

• Dynamic regions
• Can allocate or deallocate the arena at will.
• Use a unique pointer as a “key” for access.

The combination actually subsumes lexical
regions and provides the flexibility needed to
optimize memory management for clients.

March 2005 29

The Flexibility Pays: MediaNET
TTCP benchmark (packet forwarding):
Cyclone v.0.1 (lexical regions & BDW GC)

• High water mark: 840 KB
• 130 collections
• Basic throughput: 50 MB/s

Cyclone v.0.5 (unique ptrs + dynamic regions)
• High water mark: 8 KB
• 0 collections
• Basic throughput: 74MB/s

March 2005 30

Cyclone vs. Java
Cyclone vs. Java

0
5

10
15
20
25
30
35
40

ac
ke

rm
an

n

ex
ce

pt

ha
sh

he
ap

so
rt

m
at

rix

ra
nd

om

si
ev

e

st
rc

at w
c

Shootout Benchmark

CP
U

Ti
m

e
No

rm
al

iz
ed

 to

G
CC

Cyclone/gcc
Java/gcc

March 2005 31

Comparing to Java
Program Cyclone/gcc Java/gcc
Ackermann 0.75 7.57
Ary3 1.21 8.85
Except 2.02 35.45
Fibo 1.00 2.86
Hash 1.35 3.83
Hash2 1.80 1.82
Heapsort 1.58 5.84
Lists 3.04 24.33
Matrix 1.24 7.30
Nestedloop 0.99 7.72
Random 0.99 10.11
Reversefile 6.45 36.28
Sieve 0.99 5.17
Spellcheck 1.15 3.67
Strcat 4.22 12.00
Sumcol 1.20 3.21
Wc 1.73 2.02

Bagley's Language
Shootout comparing
Sun's Java 2 RTE
v1.4.1_03-b02.

CPU time normalized
to gcc's.

On average:
Cyclone: 1.87
Java : 10.47

March 2005 32

Macro-benchmarks:
We have also ported a variety of security-critical
applications where we see little overhead
(e.g., 2% for the Boa Webserver.)

C vs. Cyclone Throughput on Boa Webserver

3900
4000
4100
4200
4300
4400
4500
4600

1024 2048 4096

document size (bytes)

th
ro

ug
hp

ut

(r
eq

ue
st

s/
se

c)

C

Cyclone

March 2005 33

Some Lessons Learned
• Don’t try to “fix” C:

• Example: auto-break in switch cases
• Instead, explicit “fallthru” annotation.

• There is no ANSI C:
• People matter, performance doesn’t

• Porting code is still too painful.
• Error messages are crucial.

• Interoperability is crucial.

March 2005 34

Very Important Lessons
The compiler at this point is huge:

• ~ 50KLOC
• We kept finding subtle bugs in the

analyses (c.f., order of evaluation.)
• Is it trustworthy?

Furthermore, there’s no end to the
refinements needed.
• Can we simplify the approach?

March 2005 35

Current Thrust:
We’re currently working on a more trustworthy,

extensible infrastructure:
• As in ESC and SPLint:

• Compiler computes verification conditions (using
strongest-post-conditions.)

• Infers some minimal loop invariants, but
programmers can supply better invariants.

• Uses an internal theorem prover to discharge
most of the VCs.

• Unlike ESC/SPLint:
• The prover is not trusted: must give witness.
• If we can’t prove it, then we do the run-time check.

March 2005 36

Longer Term:
No need to stick with our prover:

• Should be able to discharge VCs using any plug-in
prover, as long as it can produce a witness that
we can check.

• In fact, should be able to discharge some proofs
by hand!

Problem:
• Very few sound, witness-producing provers with

useful decision procedures.
• For instance, few of them deal with machine

arithmetic, and those that do don’t scale well.

March 2005 37

The Program Logic
Another issue is fixing the logic to deal with

issues such as memory mgmt.

The usual encoding of memory as a big array is
insufficient for many reasons.

Hoping to leverage the emerging spatial logics
(e.g., Reynolds & Ohearn’s BI).

Open question: decision procedures.

March 2005 38

Summary:
Cyclone is a type-safe dialect of C

• Much better performance than previous
type-safe languages.

• In large part because programmers can
tune performance (erm, safety) by adding
additional information.

• More suited to writing new systems code
than porting legacy code.

• Our ultimate goal is to make it possible (but
not necessary) to eliminate all run-time
checks.

March 2005 39

More info...

www.eecs.harvard.edu/~greg/Cyclone

	A Type-Safe Dialect of C
	C is a terrible language:
	But C Is Also Very Useful:
	A Number of Recent Projects:
	General Flavor
	The Cyclone Project
	Cyclone Users
	This Talk
	Hello World in Cyclone
	Pointer Qualifiers Clarify
	Subtyping Is Crucial:
	Determining Qualifiers
	Checked Coercions & Warnings
	Should Be Able to Avoid Warnings:
	Flow Analysis
	An Example:
	Using Static Asserts
	In Practice:
	One Big Wrinkle: Order
	Solutions:
	Other Cyclone Features:
	Region Goals
	Runtime Organization
	The Good News
	The Bad News:
	To Address Shortcomings
	The Flexibility Pays: MediaNET
	Cyclone vs. Java
	Comparing to Java
	Some Lessons Learned
	Very Important Lessons
	Current Thrust:
	Longer Term:
	The Program Logic
	Summary:
	More info...

