
1
Mechanization of a Large DSML: An Experiment with AADL and Coq
© 2022 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Oqarina – Mechanization of the
AADL Architectural Description
Language

Jerome Hugues

2
Mechanization of a Large DSML: An Experiment with AADL and Coq
© 2022 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Copyright 2022 Carnegie Mellon University and IEEE.
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-
15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally
funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic
form without requesting formal permission. Permission is required for any other use. Requests for permission
should be directed to the Software Engineering Institute at permission@sei.cmu.edu.
DM22-0922

3
Mechanization of a Large DSML: An Experiment with AADL and Coq
© 2022 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

BLUF

DSML (Domain-Specific Modeling Languages) required in a model-based context
Graphical and/or textual syntax, complex semantics, multiple analysis capabilities

Common core concepts and typical solutions
• Syntax rules -> BNF
• Typing rules -> meta-model + OCL
• Dynamic behavior -> timed/stochastic transition systems, .. per observed property

This paper: mechanization of AADL, the Architecture and Analysis Design Language
• A large DSML with a rich semantics, many existing tools
• Focus on static semantics
• Two use-cases: user-defined predicates, static scheduling analysis + proofs

4
Mechanization of a Large DSML: An Experiment with AADL and Coq
© 2022 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Before You Even Write a Line of Code…

AADL allows you to design the entire system and see where
integration problems may occur. Then you can change the
design of the system to eliminate those errors.

Being able to perform a virtual integration of the software,
hardware, and system is the key to identifying problems
early – and changing the design to ensure those problems
will not occur.

• SAE Avionics AADL
standard adopted in
2004

• Focused on embedded
software system
modeling, analysis, and
generation

• Strongly typed language
with well-defined
semantics

• Used for critical systems
in domains such as
avionics, aerospace,
medical, nuclear,
automotive, and robotics

About AADL

5
Mechanization of a Large DSML: An Experiment with AADL and Coq
© 2022 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

AADL language standard [v1 2004, … v2.3 2022]
• Embedded system modeling, analysis, and generation
• Evidence as a result of automated tool-supported analysis

- Performance analysis: worst-case response time, schedulability
- Safety analysis: eliciting unsafe scenarios, computing fault

trees, probability of reaching an unsafe state
- Automated model review: conformance to modeling guidelines
- Code generation: generating “correct-by-construction” software

AADL is defined as a language, with a BNF + validity rules
• Implementation choices : meta-model and rule encoding

Standardized AADL Annex Extensions
• Error Model language for safety, reliability,

security analysis [2006, 2015]
• ARINC653 extension for partitioned

architectures [2011, 2015]
• Behavior Specification Language for modes

and interaction behavior [2011, 2017]
• Data Modeling extension for interfacing with

data models (UML, ASN.1, …) [2011]
• AADL Runtime System & Code Generation

[2006, 2015]
• FACE Annex [2019]

AADL Standard Suite (AS-5506 series)

6
Mechanization of a Large DSML: An Experiment with AADL and Coq
© 2022 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

AADL Layers

AADL Standard

AADL internal
Model representation

AADL analyses

Different behavioral models,
depending on semantics (timed,
untimed, stochastic, etc.)

Behavioral model
1Behavioral model

2Behavioral model
…

Behavioral
analysis

Architecture data
model subset

Static
scheduling

analysis

Static security
analysis

Subset of the
static structure of
the AADL model.
Analysis specific
rules

AADL Project Valid decorative
model

Valid instance
model

Component
model

Property sets

Component
model

Consistency
rules

Static architecture: structural and
configuration parameters

Communication
semantics

Port semantics

Component
state machine

Dynamic architecture:
state-based behavior

“Model-Based paradox”: claim that model-based approaches are
better than document-based. But the semantics of a model is
described as a … document
Þ Prone to interpretation errors

7
Mechanization of a Large DSML: An Experiment with AADL and Coq
© 2022 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

AADL Mechanization in Coq

Research question: provide unambiguous formal
semantics for AADL

• Reference for other tools
• Improved standard by eliminating corner cases

Solution: mechanize the semantics of AADL using
the Coq Interactive Theorem Prover (ITP)

• Static and dynamic semantics, property sets

Oqarina released as software artefact:
github.com/Oqarina under the BSD (SEI) license.

DRAFT PENDING RRO APPROVAL

Inductive component :=
| Component : identifier ! (* classifier *)

ComponentCategory ! (* category *)

identifier ! (* classifier *)

list feature ! (* features *)

list component ! (* subcomponents *)

list property value ! (* properties *)

list connection !
component

with feature :=
| Feature : identifier ! (* its unique identifier *)

DirectionType !
FeatureCategory ! (* *)

component ! (* corresponding component instance *)

list property value ! (* properties *)

feature

with connection :=
| Connection : identifier !

list identifier ! (* path to the source feature *)

list identifier ! (* path to the destination feature *)

connection

.
(* Definition of an empty component *)

Definition nil component := Component empty identifier (null) empty identifier nil nil

nil nil .

2.2 Examples

From the previous definitions, one can build a couple of examples showing how to build an
AADL instance model. Note that one benefit of Coq is that we can build partial instance
models as intermediate variables.

Definition of the Priority property

Definition Priority : property type :=
Property Type [thread] aadlinteger t .

Definition A Priority Value :=
Property Value Priority (aadlinteger 42).

Definition of a component

Definition A Component := Component (Ident "a component") (abstract)
(Ident "foo classifier") nil nil nil nil .

Definition A Component Impl :=
Component (Ident "another component impl") (abstract) (Ident "bar classifier.impl") nil

[A Component] nil nil .
Definition A Feature := Feature (Ident "a feature") inF eventPort nil component .

2.3 Accessor functions

The following projections extract information from a component

CMU/SEI-2020-TR-XXX | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
Distribution Statement Goes Here.

SAFIR delivers formal semantics of AADL as Coq
types, theorems, and operational semantics.

8
Mechanization of a Large DSML: An Experiment with AADL and Coq
© 2022 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

From AADL to Coq – Step #1: encoding the grammar

Coq inductive types provide the foundation to encode an AST as a Coq type

Coq typing rules restricts the construction of model elements, e.g. components

Inductive component :=
| Component : identifier →

ComponentCategory → (* category *)
fq_name →
list feature →
list component →
list property_association → component

(* .. *)

<category> implementation foo.i [extends <bar>.i]
subcomponents

-- internal elements
connections

-- from external interface to
-- internal subcomponents

properties
-- list of properties

end foo.i;

9
Mechanization of a Large DSML: An Experiment with AADL and Coq
© 2022 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

From AADL to Coq – Step #2: Notations

Using the previous terms is not user-friendly

Solution: Coq notations, i.e. a DSML embedded in Coq

Example A_Component := Component
(Id "a_component")
(abstract)
(FQN [Id "pack1"] (Id "foo_classifier") None) nil nil nil nil.

Example A_Component_2 :=
abstract: "a_component" → | "pack1::foo_classifier"
features: [feature: in_event "a_feature”]
subcomponents: nil
connections: nil
properties: nil

abstract a_component
features

a_feature : in event port;
properties

none;
end a_component;

10
Mechanization of a Large DSML: An Experiment with AADL and Coq
© 2022 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

From AADL to Coq – Step #3: legality rules

Legality rules define the correctness of some syntactic statements,

e.g. well-formedness of an AADL component, as a proposition

A decidable proposition (in Prop) denotes a statement that can be proved as either true or false.

(so far) implemented rules are decidable => they can be implemented as Boolean-returning functions

Note: some (minor) reformulations in the standard required to remove ambiguities in order of evaluation
for typing rules

Definition Well_Formed_Component (c : component) : Prop :=
Well_Formed_Component_Id (c) /\
Well_Formed_Component_Classifier (c) /\
Well_Formed_Component_Features (c) /\
Rule_4_5_N1 (c).

11
Mechanization of a Large DSML: An Experiment with AADL and Coq
© 2022 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Oqarina
https://github.com/Oqarina/oqarina

Coq data types ó AADL meta-model, typing rules, support for building a model
Well-formedness rules ó AADL legality/consistency rules (i.e., model validity)
Operational semantics ó how to ”execute” a model (e.g., proof, model checking, simulation)

Features:
• User-defined propositions, Resolute
• mono-core scheduling analysis using the PROSA library
• simulation of an AADL model by mapping to the DEVS formalism (not discussed today)

AADL JSON
Parser

AADL Instance
Coq data type

Well-formedness
rules

Operational
semantics

Import model from
AADL toolsets

AADL meta-model
as Coq types

Is the model “correct” with
regards to static semantics
rules (e.g., types, static
composition)

Behavior of
component
categories, dynamic
composition rules

https://github.com/Oqarina/oqarina

12
Mechanization of a Large DSML: An Experiment with AADL and Coq
© 2022 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Oqarina case study #1: Resolute

Resolute is a DSML for reasoning on AADL models, developed by Collins
• First order logic, iteration over component hierarchy, .. for static verification
• Accessors: is_thread, has_property, subcomponents, …

Can be directly embedded in Coq as a library of terms

Coq interpreter used to either compute or prove properties on an AADL model
=> Decidability turns most proof to a mere “trivial” statement.

Definition Thread_Has_Valid_Scheduling_Parameters (c : component) :=
is_thread c ∧
has_property c Dispatch_Protocol_Name ∧ has_property c Period_Name ∧
has_property c Compute_Execution_Time_Name.

Definition System_Has_Valid_Scheduling_Parameters (r: component) :=
All Thread_Has_Valid_Scheduling_Parameters (thread_set r).

13
Mechanization of a Large DSML: An Experiment with AADL and Coq
© 2022 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Oqarina case study #2: PROSA

Schedulability is one facet of the correctness of a CPS

PROSA supports abstract Response-Time Analysis in Coq
Data structure lemmas to check schedulability
Axioms on the system (mono-core, fixed priority) not visible

PROSA axioms are decidable properties of AADL models
Expressed using Resolute

Mapping from AADL to PROSA taskset definition
translation of concepts (task -> job, priority, WCET, …),
guarded by a proof the AADL model is correct

Proof of schedulability using PROSA lemmas

AADL/Oqarina

Task set/PROSA

(* Safe mapping from AADL to PROSA *)
Definition Map_AADL_to_PROSA

(c: {c : component | Check_aRTA_Hypotheses c}) :=
Map_AADL_to_PROSA_unsafe (proj1_sig c).

Proof of schedulability

14
Mechanization of a Large DSML: An Experiment with AADL and Coq
© 2022 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Conclusion

Mechanizing a DSML in Coq is a feasible task
Demonstrated static semantics + some verification capabilities
Approx. 10K SLOCS -- https://github.com/Oqarina/

Dynamic semantics underway
Defining operational semantics of AADL (see ISOLA’22 paper)
Translation in Coq and orchestration using the DEVS formalism

Þ A mechanization of a DSML + a proof the DSML semantics is sound

Future work to cover other aspects of AADL: error modeling, flow analysis

https://github.com/Oqarina/

