
Flexible Mechanisms for Remote Attestation
Perry Alexander, Adam Petz, Anna Fritz, Grant Jurgensen

Information and Telecommunication Technology Center

The University of Kansas

{palexand,ampetz,arfritzz,gajurgensen}@ku.edu

‣ Appraiser requests evidence

- specifies needed information

- provides a fresh nonce

‣ Target gathers evidence

- measures application

- gathers evidence of trust

‣ Target generates evidence package

- measurement results

- the appraiser’s nonce

- cryptographic signatures

‣ Appraiser assesses evidence

- good application behavior

- infrastructure trustworthiness

- good nonce

2

Semantic Remote Attestation

Appraiser Target

attestation

request

evidence

package

‣ Formal semantics of trust - Definition of trust sufficient for evaluating systems

‣ Verified remote attestation infrastructure - Verified components for

assembling trusted systems

‣ Enterprise attestation and appraisal - Scaling trust to large, complex systems

in principled ways

‣ Sufficiency and soundness of measurement - Formally defining what

measurements reveal about a system

3

Research Goals

‣ Three attestation managers

- UserAM - application software attestation

- PlatformAM - kernel integrity measurement

- seL4AM - hardware platform attestation

‣ seL4 implementation infrastructure

- Linux VM running application software

- CAmkES components running attestation infrastructure

- platform roots-of-trust for late launch (pending)

‣ Attestation gathers evidence

- attestation requests made top down

- critical components measured bottom-up

- evidence composed bottom up from roots-of-trust

‣ Is this a one-off attestation architecture?

4

Remote Attestation Example

seL4

Linux/Android/Windows

Application

Software

Attestation

Manager

Attestation

Manager

Attestation

Manager

sel4 VMM

CAmkES

CAmkES

Platform

RoT

KIM

Platform

Interface

MeasurementAttestation

Request

‣ UserAM receives attestation request

- sends layered request to PlatformAM

- receives PlatformAM evidence

- performs application measurements

- bundles PlatformAM evidence, nonce, and local measurements

‣ PlatformAM receives attestation request

- sends layered request to seL4AM

- receives seL4AM evidence

- performs kernel integrity measurements

- bundles seL4AN evidence, nonce, and KIM measurements

‣ seL4AM receives attestation request

- retrieves boot evidence

- bundles and returns boot evidence

‣ Reusable attestation architecture

- builds evidence and trust bottom up from roots-of-trust

- principled, reusable attestation template

- captured by attestation protocol and system architecture

5

Layered Attestation

seL4

Linux/Android/Windows

Application

Software

Attestation

Manager

Attestation

Manager

Attestation

Manager

sel4 VMM

CAmkES

CAmkES

Platform

RoT

KIM

Platform

Interface

MeasurementAttestation

Request

‣ Attestation architecture building blocks

- Common Attestation Manager

- Attestation Service Providers

- Copland attestation protocol language

‣ Patterns for attestation

- common attestation structures like Layered Attestation

- evidence bundling mechanisms

‣ Tools and Semantics for assessment

- when is a protocol “good”?

- when is one protocol better than another?

- what does a protocol accomplish?

6

Flexible Mechanisms

seL4

Linux/Android/Windows

Application

Software

Attestation

Manager

Attestation

Manager

Attestation

Manager

sel4 VMM

CAmkES

CAmkES

Platform

RoT

KIM

Platform

Interface

MeasurementAttestation

Request

‣ Negotiation

- establish a security context

- find a mutually approved attestation protocol

‣ Copland Interpeter

- executes a Copland protocol

- verified compiler and Copland VM

‣ Communication

- establish communication among AMs

- API for executing @P commands

‣ Nonce Management

- generating new, unique nonces

- remembering nonces for appraisal

‣ Appraisal

- general purpose appraisal function

- “re-runs” attestation with golden values

7

Attestation Manager

‣ Negotiation

‣ Copland Interpreters

‣ Communications

‣ Nonce Management

‣ Appraisal

do{n<-nonce();

 e1<-@P:n[…];

 m<-nonce();

 e2<-@Q:m[…];

 a1<-(app n e1);

 a2<-(app m e2);

 return a1,a2

}

‣ Attestation Monad

- state monad with exceptions

- provides state for Copland interpreter

‣ Copland Interpeter

- invoked on nonces and protocols

- verified in previous work (NFM’21)

‣ Communication

- assumes platform provides secure channel

- abstract interface to specific communication

implementations

‣ Nonce Management

- assumes a platform source of randomness

- tracks nonce generation for verification

‣ Appraisal

- verified all gathered evidence is appraised

- verified correctness up to specific measurement

values

8

Verified Attestation Component

‣ Negotiation

‣ Copland Interpreters

‣ Communications

‣ Nonce Management

‣ Appraisal

do{n<-nonce();

 e1<-@P:n[…];

 m<-nonce();

 e2<-@Q:m[…];

 a1<-(app n e1);

 a2<-(app m e2);

 return a1,a2

}

‣ Attestation Protocol templates for common shapes

- Layered

- Certificate-Style

- Cached

- Background Check

‣ Implemented using communicating Attestation Manager instances

- attestation service providers for measurement and other services

- requires “plumbing” for communication, scheduling, and access control

‣ Principled composition

- assembling attestation ecosystems

- scaling to the enterprise

- assessing impacts on adversaries

9

Attestation Patterns

‣ Appraisal as a service

- attester generates evidence

- appraiser evaluates evidence

- a certificate indicates appraisal results to relying party

‣ Relying party requests an appraisal

- sends a request and a fresh nonce to attester

- signs request for authenticity

‣ Attester gathers evidence and meta-
evidence

- executes measurers to gather system information

- signs evidence with nonce to ensure integrity

‣ Appraiser evaluates evidence

- checks evidence values and signature

- generates a certificate with Relying Party’s nonce

‣ Certificate returned to Relying Party

- check the nonce, signature and appraisal result

- include result in trust decisions

10

Certificate-Style

cert(n)
req(n)

Relying
Party

Appraiser

Attester

evidence(n)cert(n)

*P0,n: @P1[(attest P1 sys) ->

 @P2[(appraise P2 sys) ->

 (certificate P2 sys)]]

11

Cached Certificate-Style

cert(n)
req(n)

Relying
Party

Appraiser

Attester

evidencecert

*P1:(attest P1 sys) ->

 @P2[(appraise P2 sys) -> (certificate P2 sys)] ->

 (store P1 cache)

*P0,n:@P1[((retrieve P1 cache) -<+ _) -> !]

‣ Appraisal as a service (again)

- attester generates and appraiser evaluates evidence

- certificate is cached for future use

‣ Attester gathers evidence and meta-evidence

- executes measurers to gather system information

- signs evidence with nonce to ensure integrity

‣ Appraiser evaluates evidence

- checks evidence values and signature

- generates a certificate

‣ Attester caches certificate for future use

- controls when and how attestation is performed

- reuses attestation results for efficiency

‣ Relying party requests an appraisal

- sends a request and a fresh nonce to attester

- signs request for authenticity

‣ Certificate returned to Relying Party

- check the nonce, signature and appraisal result

- include result in trust decisions

12

Background Check

evid(n)
req(n)

Relying
Party

Appraiser

Attester

evidence(n)

result

*p0,n: @P1[(attest P1 sys)] -> @P2[(appraise P2 sys)]

‣ Appraisal as a service (again)

- attester generates evidence

- relying party requests appraisal

‣ Relying party requests an appraisal

- sends a request and a fresh nonce to attester

- signs request for authenticity

‣ Attester gathers evidence and meta-
evidence

- executes measurers to gather system information

- signs evidence with nonce to ensure integrity

- returns evidence to relying party with nonce

‣ Appraiser evaluates evidence

- checks evidence values and signature

- may generate a certificate if required

‣ Result returned to Relying Party

- owns generated evidence

- often Relying Party is also Appraiser

‣ Composing Layered and Background Check

- background check style appraisal

- layered style builds evidence bottom up

‣ Relying party requests an appraisal

- sends a request and a fresh nonce to attester

- signs request for authenticity

‣ Attester makes requests of separate
attesters

- sends a request and nonce to multiple attesters

- manages ordering of attestation requests

- layered attesters gather evidence

‣ Attester assembles evidence package

- indicates evidence ordering

- composes multiple attestation results

- returns evidence to relying party

‣ Appraiser evaluates evidence

- checks evidence values and signature

- may generate a certificate if required

- result returned to Relying Party

13

Layered Background Check

bundle(n)
req(n)

Relying
Party

Appraiser

Attester

bundle(n)

result

*p0,n: @P1[((attest P1 sys) ->

 (attest P3 att) ->

 (attest P4 att)

 +~+

 (@P3[(attest P3 sys)]

 +~+

 @P4[(attest P4 sys)])) ->

 @P2[(appraise P2 it) -> !]]

AttesterAttester

ev
id(n)req

(n) evid(n)
req(n)

‣ Multi-Party Attestation

- simultaneous attestation

- single trusted appraiser

- relying party = attester

‣ Both Relying Parties request attestation

- send requests and nonces asynchronously

- receive requests and nonces

‣ Both Attesters return evidence

- attestation occurs asynchronously

- no initial trust

‣ Both Relying Parties request Appraisal

- shared, mutually trusted appraiser

- returns appraisal result

‣ Same song, second verse

- two background check attestations combined

- could add caching or certificate generation

14

Parallel Mutual Attestation

evidence(n)
request(n)

Relying
Party

Appraiser

Relying
Party

evidence

result

*P0,n 0 : @P1[(attest 01 P1 sys)] ->

 @P2[(appraise 01 P2 sys)]

*P1,m 1 : @p0[(attest 10 p0 sys)] ->

 @P2[(appraise 10 P2 sys)]

evidence

result

evidence(m)
request(m)

Attester Attester

‣ Assume a correct attestation platform

- correctly executes Copland protocols

- correctly appraises results

- verified with respect to Copland semantics

‣ What can we say about protocols?

- adversaries acting among protocol actions

- adversaries accessing protected information

‣ Model Finding (MITRE’s CHASE Tool)

- discovers adversary models consistent with attestation protocols

- allows evaluation of potential adversary behavior outside the

attestation protocol

‣ Separation Analysis

- CAmkES specifications define allowed communication

- synthesize or analyze architectures to evaluate allowed

interaction

‣ Adversary “in a box”

- analysis specifies what an adversary might do in the presence of

the protocol

- “the box” constrains the adversary making them do things they

don’t want to

- balance the level of constraint against the threat

15

Protocol Analysis

evidence

Adversary

“in a box”

do{n<-nonce();

 e1<-@P:n[…];

 …}

CVM

Appraisal

request
M1 M2

a1 a2

…

…

event trace

config/policyexecution

architecture

semantics

model

finding

event
system

separation

logic

constraints constraints

‣ Re-targeting Experiments

- moving attestation infrastructure from among problems

- moving attestation infrastructure among architectures

‣ Testbed Development

- attestation testbed planned for Fall 2021 deployment

- will include heterogeneous systems from IoT devices to

servers

‣ Public Domain Infrastructure

- all tools and systems are public domain

- available on Linux, MacOS, Windows (sort of)

16

Validation

seL4

Linux/Android/Windows

Application

Software

Attestation

Manager

Attestation

Manager

Attestation

Manager

sel4 VMM

CAmkES

CAmkES

Platform

RoT

KIM

Platform

Interface

MeasurementAttestation

Request

‣ Colleagues

- Peter Loscocco (NSA)

- John Ramsdell (MITRE)

- Paul Rowe (MITRE)

- Ian Kretz (MITRE)

- Sarah Helble (JHUAPL)

- David Hardin (Collins Aerospace)

- Konrad Slind (Collins Aerospace)

‣ Staff

- Edward Komp

17

Thank You!

‣ Students

- Adam Petz

- TJ Barclay

- Grant Jurgensen

- Anna Fritz

- Michael Neises

- Sarah Scott

- Anna Seib

- Anna Burns

