
Flexible Mechanisms for Remote Attestation
Perry Alexander, Adam Petz, Anna Fritz, Grant Jurgensen
Information and Telecommunication Technology Center
The University of Kansas
{palexand,ampetz,arfritzz,gajurgensen}@ku.edu

‣ Appraiser requests evidence
- specifies needed information
- provides a fresh nonce

‣ Target gathers evidence
- measures application
- gathers evidence of trust

‣ Target generates evidence package
- measurement results
- the appraiser’s nonce
- cryptographic signatures

‣ Appraiser assesses evidence
- good application behavior
- infrastructure trustworthiness
- good nonce

2

Semantic Remote Attestation

Appraiser Target

attestation

request

evidence

package

‣ Formal semantics of trust - Definition of trust sufficient for evaluating systems
‣ Verified remote attestation infrastructure - Verified components for

assembling trusted systems
‣ Enterprise attestation and appraisal - Scaling trust to large, complex systems

in principled ways
‣ Sufficiency and soundness of measurement - Formally defining what

measurements reveal about a system

3

Research Goals

‣ Three attestation managers
- UserAM - application software attestation
- PlatformAM - kernel integrity measurement
- seL4AM - hardware platform attestation

‣ seL4 implementation infrastructure
- Linux VM running application software
- CAmkES components running attestation infrastructure
- platform roots-of-trust for late launch (pending)

‣ Attestation gathers evidence
- attestation requests made top down
- critical components measured bottom-up
- evidence composed bottom up from roots-of-trust

‣ Is this a one-off attestation architecture?

4

Remote Attestation Example

seL4

Linux/Android/Windows

Application

Software

Attestation

Manager

Attestation

Manager

Attestation

Manager

sel4 VMM

CAmkES

CAmkES

Platform

RoT

KIM

Platform

Interface

MeasurementAttestation

Request

‣ UserAM receives attestation request
- sends layered request to PlatformAM
- receives PlatformAM evidence
- performs application measurements
- bundles PlatformAM evidence, nonce, and local measurements

‣ PlatformAM receives attestation request
- sends layered request to seL4AM
- receives seL4AM evidence
- performs kernel integrity measurements
- bundles seL4AN evidence, nonce, and KIM measurements

‣ seL4AM receives attestation request
- retrieves boot evidence
- bundles and returns boot evidence

‣ Reusable attestation architecture
- builds evidence and trust bottom up from roots-of-trust
- principled, reusable attestation template
- captured by attestation protocol and system architecture

5

Layered Attestation

seL4

Linux/Android/Windows

Application

Software

Attestation

Manager

Attestation

Manager

Attestation

Manager

sel4 VMM

CAmkES

CAmkES

Platform

RoT

KIM

Platform

Interface

MeasurementAttestation

Request

‣ Attestation architecture building blocks
- Common Attestation Manager
- Attestation Service Providers
- Copland attestation protocol language

‣ Patterns for attestation
- common attestation structures like Layered Attestation
- evidence bundling mechanisms

‣ Tools and Semantics for assessment
- when is a protocol “good”?
- when is one protocol better than another?
- what does a protocol accomplish?

6

Flexible Mechanisms

seL4

Linux/Android/Windows

Application

Software

Attestation

Manager

Attestation

Manager

Attestation

Manager

sel4 VMM

CAmkES

CAmkES

Platform

RoT

KIM

Platform

Interface

MeasurementAttestation

Request

‣ Negotiation
- establish a security context
- find a mutually approved attestation protocol

‣ Copland Interpeter
- executes a Copland protocol
- verified compiler and Copland VM

‣ Communication
- establish communication among AMs
- API for executing @P commands

‣ Nonce Management
- generating new, unique nonces
- remembering nonces for appraisal

‣ Appraisal
- general purpose appraisal function
- “re-runs” attestation with golden values

7

Attestation Manager

‣ Negotiation

‣ Copland Interpreters

‣ Communications

‣ Nonce Management

‣ Appraisal

do{n<-nonce();
 e1<-@P:n[…];
 m<-nonce();
 e2<-@Q:m[…];
 a1<-(app n e1);
 a2<-(app m e2);
 return a1,a2
}

‣ Attestation Monad
- state monad with exceptions
- provides state for Copland interpreter

‣ Copland Interpeter
- invoked on nonces and protocols
- verified in previous work (NFM’21)

‣ Communication
- assumes platform provides secure channel
- abstract interface to specific communication

implementations

‣ Nonce Management
- assumes a platform source of randomness
- tracks nonce generation for verification

‣ Appraisal
- verified all gathered evidence is appraised
- verified correctness up to specific measurement

values

8

Verified Attestation Component

‣ Negotiation

‣ Copland Interpreters

‣ Communications

‣ Nonce Management

‣ Appraisal

do{n<-nonce();
 e1<-@P:n[…];
 m<-nonce();
 e2<-@Q:m[…];
 a1<-(app n e1);
 a2<-(app m e2);
 return a1,a2
}

‣ Attestation Protocol templates for common shapes
- Layered
- Certificate-Style
- Cached
- Background Check

‣ Implemented using communicating Attestation Manager instances
- attestation service providers for measurement and other services
- requires “plumbing” for communication, scheduling, and access control

‣ Principled composition
- assembling attestation ecosystems
- scaling to the enterprise
- assessing impacts on adversaries

9

Attestation Patterns

‣ Appraisal as a service
- attester generates evidence
- appraiser evaluates evidence
- a certificate indicates appraisal results to relying party

‣ Relying party requests an appraisal
- sends a request and a fresh nonce to attester
- signs request for authenticity

‣ Attester gathers evidence and meta-
evidence

- executes measurers to gather system information
- signs evidence with nonce to ensure integrity

‣ Appraiser evaluates evidence
- checks evidence values and signature
- generates a certificate with Relying Party’s nonce

‣ Certificate returned to Relying Party
- check the nonce, signature and appraisal result
- include result in trust decisions

10

Certificate-Style

cert(n)
req(n)

Relying
Party

Appraiser

Attester

evidence(n)cert(n)

*P0,n: @P1[(attest P1 sys) ->
 @P2[(appraise P2 sys) ->
 (certificate P2 sys)]]

11

Cached Certificate-Style

cert(n)
req(n)

Relying
Party

Appraiser

Attester

evidencecert

*P1:(attest P1 sys) ->
 @P2[(appraise P2 sys) -> (certificate P2 sys)] ->
 (store P1 cache)
*P0,n:@P1[((retrieve P1 cache) -<+ _) -> !]

‣ Appraisal as a service (again)
- attester generates and appraiser evaluates evidence
- certificate is cached for future use

‣ Attester gathers evidence and meta-evidence
- executes measurers to gather system information
- signs evidence with nonce to ensure integrity

‣ Appraiser evaluates evidence
- checks evidence values and signature
- generates a certificate

‣ Attester caches certificate for future use
- controls when and how attestation is performed
- reuses attestation results for efficiency

‣ Relying party requests an appraisal
- sends a request and a fresh nonce to attester
- signs request for authenticity

‣ Certificate returned to Relying Party
- check the nonce, signature and appraisal result
- include result in trust decisions

12

Background Check

evid(n)
req(n)

Relying
Party

Appraiser

Attester

evidence(n)

result

*p0,n: @P1[(attest P1 sys)] -> @P2[(appraise P2 sys)]

‣ Appraisal as a service (again)
- attester generates evidence
- relying party requests appraisal

‣ Relying party requests an appraisal
- sends a request and a fresh nonce to attester
- signs request for authenticity

‣ Attester gathers evidence and meta-
evidence

- executes measurers to gather system information
- signs evidence with nonce to ensure integrity
- returns evidence to relying party with nonce

‣ Appraiser evaluates evidence
- checks evidence values and signature
- may generate a certificate if required

‣ Result returned to Relying Party
- owns generated evidence
- often Relying Party is also Appraiser

‣ Composing Layered and Background Check
- background check style appraisal
- layered style builds evidence bottom up

‣ Relying party requests an appraisal
- sends a request and a fresh nonce to attester
- signs request for authenticity

‣ Attester makes requests of separate
attesters

- sends a request and nonce to multiple attesters
- manages ordering of attestation requests
- layered attesters gather evidence

‣ Attester assembles evidence package
- indicates evidence ordering
- composes multiple attestation results
- returns evidence to relying party

‣ Appraiser evaluates evidence
- checks evidence values and signature
- may generate a certificate if required
- result returned to Relying Party

13

Layered Background Check

bundle(n)
req(n)

Relying
Party

Appraiser

Attester

bundle(n)

result

*p0,n: @P1[((attest P1 sys) ->
 (attest P3 att) ->
 (attest P4 att)
 +~+
 (@P3[(attest P3 sys)]
 +~+
 @P4[(attest P4 sys)])) ->
 @P2[(appraise P2 it) -> !]]

AttesterAttester

ev
id(n)req

(n) evid(n)
req(n)

‣ Multi-Party Attestation
- simultaneous attestation
- single trusted appraiser
- relying party = attester

‣ Both Relying Parties request attestation
- send requests and nonces asynchronously
- receive requests and nonces

‣ Both Attesters return evidence
- attestation occurs asynchronously
- no initial trust

‣ Both Relying Parties request Appraisal
- shared, mutually trusted appraiser
- returns appraisal result

‣ Same song, second verse
- two background check attestations combined
- could add caching or certificate generation

14

Parallel Mutual Attestation

evidence(n)
request(n)

Relying
Party

Appraiser

Relying
Party

evidence

result

*P0,n 0 : @P1[(attest 01 P1 sys)] ->
 @P2[(appraise 01 P2 sys)]
*P1,m 1 : @p0[(attest 10 p0 sys)] ->
 @P2[(appraise 10 P2 sys)]

evidence

result

evidence(m)
request(m)

Attester Attester

‣ Assume a correct attestation platform
- correctly executes Copland protocols
- correctly appraises results
- verified with respect to Copland semantics

‣ What can we say about protocols?
- adversaries acting among protocol actions
- adversaries accessing protected information

‣ Model Finding (MITRE’s CHASE Tool)
- discovers adversary models consistent with attestation protocols
- allows evaluation of potential adversary behavior outside the

attestation protocol

‣ Separation Analysis
- CAmkES specifications define allowed communication
- synthesize or analyze architectures to evaluate allowed

interaction

‣ Adversary “in a box”
- analysis specifies what an adversary might do in the presence of

the protocol
- “the box” constrains the adversary making them do things they

don’t want to
- balance the level of constraint against the threat

15

Protocol Analysis

evidence

Adversary

“in a box”

do{n<-nonce();
 e1<-@P:n[…];
 …}

CVM

Appraisal

request
M1 M2

a1 a2

…

…

event trace

config/policyexecution

architecture

semantics

model

finding

event
system

separation

logic

constraints constraints

‣ Re-targeting Experiments
- moving attestation infrastructure from among problems
- moving attestation infrastructure among architectures

‣ Testbed Development
- attestation testbed planned for Fall 2021 deployment
- will include heterogeneous systems from IoT devices to

servers

‣ Public Domain Infrastructure
- all tools and systems are public domain
- available on Linux, MacOS, Windows (sort of)

16

Validation

seL4

Linux/Android/Windows

Application

Software

Attestation

Manager

Attestation

Manager

Attestation

Manager

sel4 VMM

CAmkES

CAmkES

Platform

RoT

KIM

Platform

Interface

MeasurementAttestation

Request

‣ Colleagues
- Peter Loscocco (NSA)
- John Ramsdell (MITRE)
- Paul Rowe (MITRE)
- Ian Kretz (MITRE)
- Sarah Helble (JHUAPL)
- David Hardin (Collins Aerospace)
- Konrad Slind (Collins Aerospace)

‣ Staff
- Edward Komp

17

Thank You!

‣ Students
- Adam Petz
- TJ Barclay
- Grant Jurgensen
- Anna Fritz
- Michael Neises
- Sarah Scott
- Anna Seib
- Anna Burns

