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Why BIP?
• A language and tool-set for component-based system design  

‣ formal semantics 
‣ high expressiveness with small number of notions 
‣ code generation, simulation and verification tools 

• BIP  allows to compositionally 
‣ analyze existing applications 
‣ develop correct-by-construction applications 

• Developed and maintained  
‣ by Verimag and RiSD, EPFL 
‣ directed by Joseph Sifakis

A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen, and J. Sifakis, 
“Rigorous component-based system design using the BIP framework,” Software, IEEE, 

vol. 28, no. 3, pp. 41–48, 2011.  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BIP applications
• Development of current-by-construction satellite software 

‣ 49 safety properties enforced by construction  
‣ Compositional verification of deadlock-freedom with D-Finder 

- State space size:              
- Verification time:         minutes  

• Development of the Dala robot controller   
‣ > 500,000 lines of code 
‣ Example results of deadlock-freedom analysis with D-Finder:
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force the safety constraints on module 
interactions. The BIP model inherently 
enforced these constraints by connec-
tors and priorities.

As an example, consider a require-
ment for the robot to navigate using the 
NDD module’s GoTo service only if services 
Init, SetParams, and SetSpeed have already 
executed successfully. BIP enforces this 
requirement by adding a connector be-
tween the GoTo service’s request port and 
the other ports’ getStatus ports. The status 
values guard and may prevent the trig-
gering of the GoTo service.

Finally, we ran experiments on the 
code generated automatically from the 
Dala rover’s BIP model, using fault in-
jections to demonstrate that the BIP  
engine successfully stops the robot from 
reaching undesired or unsafe states.

B IP’s rigorous semantics and 
expressive power are unique 
among component frame-

works and associated system design 
flows. In contrast to other formalisms, 
BIP’s mathematical foundation on a 
minimal concept set and structuring 
principles doesn’t hamper its effec-
tive use for modeling complex real-life 
systems. In contrast to less expressive 
frameworks, it models various syn-
chronization types in a natural and di-

rect manner. BIP directly encompasses 
multiparty interaction between compo-
nents, avoiding the complexities nec-
essary in frameworks supporting only 
point-to-point interactions. In contrast 
to object-oriented software, BIP mod-
els are easy to understand and analyze 
as compositions of integrated features. 
Furthermore, their explicit use of au-
tomata in behavior ensures module ro-
bustness by enforcing the right execu-
tion order of functions independently 
of their use context.

Progressively refining the applica-
tion software model by applying cor-
rectness-preserving source-to-source 
transformations takes hardware archi-
tecture constraints into account as well 
as coordination mechanisms between 
processors in a distributed implemen-
tation. Essential properties are verified 
as early as possible in the design flow 
in an incremental, compositional veri-
fication process that avoids complex-
ity limitations. When the validity of a 
property is established for a model, the 
property holds for all the models ob-
tained by transformation. Transforma-
tion complexity is linear with the size 
of the transformed models.

As a unifying modeling framework, 
BIP can maintain a design flow’s over-
all coherency by comparing different 
architectural solutions and their prop-

erties. This differs significantly from 
approaches that decouple code genera-
tion and deployment from validation 
and use many different, semantically 
unrelated formalisms for program-
ming, hardware description, and  
simulation.  
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 1 Deadlock-freedom-checking results for Dala robot controller modules.

Module
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components
Control  

locations Connectors BIP LoC C/C++ LoC
Estimated state 

space size
Verification 

time (minutes)

LaserRF 43 213 202 5,343 51,653 220 × 329 × 34 1:22

Aspect 29 160 117 3,029 30,204 217 × 323 0:39

NDD 27 152 117 4,013 32,600 222 × 314 × 5 8:16

Rflex 56 308 227 8,244 57,442 234 × 335 × 1045 9:39

Antenna 20 97 73 1,645 16,501 212 × 39 × 13 0:14

Battery 30 176 138 3,898 21,527 222 × 317 × 5 0:26

Heating 26 149 116 2,453 18,380 217 × 314 × 145 0:17

Platine 37 174 151 8,669 51,511 219 × 322 × 35 0:59

 MAY/JUNE 2011  | IEEE SOFTWARE  47
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BIP by exampleMutual exclusion example
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BIP Connectors

• Connectors are tree-like structures 
‣  ports as leaves and nodes of two types 

- Triggers (diamonds) — nodes that can “initiate” an interaction 
- Synchrons (bullets) — nodes that can only “join” an interaction 

initiated by others
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Connector examples

8

Strong synchronization: pqr 

Broadcast: p + pq + pr + pqr 

Atomic broadcast: p + pqr 

Causal chain: p + pq + pqr + pqrs 

p q r

p q r

p
q r

p
q

r s

connector type Broadcast(HelloPort_t 
p, HelloPort_t q, HelloPort_t r) 
    define p' q r 
    on p q r   
    on p q    
    on p    r   

 on p   

(q =) p)
^

(r =) q)
^

(p =) true)

p Requires �
p Accepts q, r

q Requires p

q Accepts p, r

r Requires p

r Accepts p, q

Enumerative BIP specification Symbolic BIP specification
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Architecture diagrams

T1
n1

T2mp:dp qp
n2

mq:dq
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• An architecture diagram consists of: 
- component types 

• port types 
- cardinality 
- connector motifs 

• degree 
• multiplicity

A. Mavridou, E. Baranov, S. Bliudze, and J. Sifakis, “Architecture diagrams: A graphical language for 
architecture style specification,” 9th Interaction and Concurrency Experience, 2016.  

A. Mavridou, E. Stachtiari, S. Bliudze, A. Ivanov, P. Katsaros, and J. Sifakis. "Architecture-Based Design: A 
Satellite On-Board Software Case Study." 13th Formal Aspects of Component Software, 2016.
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Degree constraint

Degree constraints the number of connectors attached to 
any instance of the port type

q1

q2

q3

T
3

m:1q

q1

q2

q3

T
3

m:2q
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Multiplicity constraint
Multiplicity constraints the number of instances of the port 
type that must participate in a connector
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Engine-based execution

16

Priorities

Interactions

B E H A V I O U R1. Components notify the 
Engine about enabled 
transitions. 

2. The Engine picks an 
interaction and instructs 
the components.
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BIP summary
• Compositional approach 

‣ allows modeling complex, hierarchical components  
- atomic components 
- interaction and priority composition operators 

• Execution is orchestrated by the BIP engine 
• Expressiveness  
• Small number of notions 
• Separation of concerns between behavior and interaction 
• Architecture diagrams in BIP 

‣ reusability 
‣ allow to deal with model complexity and size

17
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Why WebGME?
• WebGME allows: 
‣ Web-based 
‣ Collaborative 
‣ Versioned model editing 
‣ Formalized metamodeling process 
‣ with FORMULA

webgme.org

 M. Maroti, T. Kecskes, R. Kereskenyi, B. Broll, P. Volgyesi, L. Juracz, T. Levendovszky, and 
A. Ledeczi, “Next generation (meta) modeling: Web-and cloud-based collaborative tool 

infrastructure.” in MPM@ MoDELS, 2014, pp. 41–60.  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formula.codeplex.com

http://webgme.org
http://formula.codeplex.com
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The design studio

   BIP        in      WebGME

19

Semantic integration

Tool integration

Specification of the 
modeling language

Model 
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Hands-on WebGME-BIP
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• Camel Routes case study 
• Many independent routes share memory 

‣ We have to control the memory usage 
‣ e.g., by limiting to only a safe number of routes simultaneously
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Conclusion
• The WebGME-BIP design studio 

‣ can be easily accessed through a web interface 
‣ is open-source 

- https://github.com/anmavrid/webgme-bip, webgme.org 
‣ allows reusability of component types and parameterized models 
‣ allows coping with modeling complexity and size 

- component types, connector motifs 
‣ has formal semantics 

- allows connection with checkers and analysis tools 
‣ includes 

- dedicated editors for code, interaction, and behavior editing  
- code generator plugins  
- consistency checking plugin 
- integration with the JavaBIP engine and visualization of its output
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https://github.com/anmavrid/webgme-bip


Thank you for your attention!


