
From !
Designed (Insecurity) !

to!
(Designed-In) Security

Briefing for HCSS Conference

May 5, 2011

In a Nutshell

Software and system development methods in use today largely
take security requirements into account late, if at all

•  In effect, we design security problems into our systems

•  A variety of rationalizations justify current approaches

•  Systems that do provide high assurance also tend to be costly to change and
adapt

Significant advances in automated software analysis and system
construction in the past decade raise the possibility of
transformational change

• static analysis, dynamic analysis, model checking, and verification have all made
significant strides

•  a research push could trigger dramatic decreases in software security
vulnerabilities and decrease the cost/risk of adaptation

Objective: be able to design, develop, evolve high-assurance,
software-intensive systems predictably and reliably while
managing risk, cost, schedule, quality, and complexity. Enable
rapid adaptation while maintaining high assurance

Where are we?

Source: IBM X-Force mid-year report, August, 2010

“The annual vulnerability disclosure rate now appears to be fluctuating between 6,000 and
8,000 new disclosures each year.”

Vulnerability is defined as a set of conditions that leads or may lead to an implicit
or explicit failure of the confidentiality, integrity, or availability of an information
system.

“Over half (55 percent) of all vulnerabilities disclosed in the first half of 2010 have no
vendor-supplied patch at the end of the period. This is slightly higher than the 52
percent that applied to all of 2009.”

Source: IBM X-Force mid-year report, August, 2010

Slight relative increase in “High” vulnerabilities

“Medium” includes XSS and SQL injection

CVSS = Common Vulnerability Scoring System

Source: IBM X-Force mid-year report, August, 2010

Software System Development Today:
Assertions without Proof

•  Programmers are expensive

•  Tools are used to economize on programmer time

•  Programs grow in pieces from many sources

•  Some tools are available for finding security vulnerabilities

•  Assuring security properties of a system of programs is
very difficult

è Most programs provide low assurance they are free of
security vulnerabilities

è Even more, most systems of programs are low assurance

è High assurance programs don’t change very much

What Tools Can Help?

•  Static Analysis

•  Dynamic Analysis

•  Model Checking

•  Theorem Proving

Progress: Theorem Proving

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

ACL2 progress

Number of Theorems Number of Definitions and Theorems Total Byte Count (KB)

Numbers by J Moore, Matt Kaufmann, Warren Hunt, UT Austin	

Progress: Model Checking

1

10

100

1000

10000

100000

1985
 1990
 1995
 2000
 2005
 2010
 2015

System Size measure

state elements

Numbers by Jason Baumgartner at IBM Austin	

Progress: Dynamic Analysis

2002
 2008
 2010

LOC
 500
 5000
 60000

1

10

100

1000

10000

100000

Li

ne
s

o
f

C
o

d
e

(L
O

C
)

NASA Symbolic Java PathFinder

Progress: Static Analysis

0

10

20

30

40

50

60

1985
 1990
 1995
 2000
 2005
 2010
 2015

Some Static Analysis Tool

Software Size Measure

What is needed to bring these and other
advances to bear on system security?

 Tools that

• Generate assurance evidence as a system is built

• Can be easily understood and used by real
programmers (and yield benefits they can see)

• Can support integration of evidence about various
components

• Can be re-applied easily as systems evolve and
adapt

Some Research Challenges

• Mathematically sound techniques to support combination of
models and composition of results from separate components

• Analysis techniques to enable traceable linking among diverse
models and code

• Language design, processing, and tooling techniques that can
provide high assurance for capable, modular, flexible systems

• Team and supply chain practices to facilitate comosition of
assurance in the supply chain

• Tools to support assurance evidence management

• Learning how to make all of the above usable

• Learning what incentives (e.g. ability to quantify results) might
motivate the use of these tools

What do we need to tip the balance?

Good ideas from YOU!

Unreasonably
vulnerable	

Reasonably
Invulnerable	

Thank You

