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ABSTRACT
Stealthy attackers often disable or tamper with system monitors to
hide their tracks and evade detection. In this poster, we present a
data-driven technique to detect such monitor compromise using
evidential reasoning. Leveraging the fact that hiding from multiple,
redundant monitors is difficult for an attacker, to identify potential
monitor compromise, we combine alerts from different sets of mon-
itors by using Dempster-Shafer theory, and compare the results to
find outliers. We describe our ongoing work in this area.
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1 INTRODUCTION
Over the years, researchers have come up with many novel ways to
detect intrusions in enterprise systems that use increasingly diverse
sources of system and network data. However, in most such work,
there was a fundamental assumption that the data being collected
were reliable and uncompromised; indeed, many papers explicitly
consider the effects of compromised data to be outside their scope [2,
3]. In light of recent work in adversarial learning [1] and the rise of
advanced persistent threats, we find that the assumption of trust in
monitor data should be reevaluated, and that detection of monitor
compromise should be addressed as an independent problem.

2 MODEL AND METHODOLOGY
Here, we describe how we combine information from redundant,
heterogeneousmonitors to detectmonitor compromise. LetmA,mB , ...

be the monitors available in a system. Each monitor can generate
multiple alerts, each of which is characterized by an alert type (e.g.,
IDS alert type, log key as defined in [2]), identification features (e.g.,
timestamp, source IP), and type-specific parameters. For a given
monitormL , let the set of alerts generated bymL be {ℓ1, ℓ2, ...}.

During a particular event, which we define as a distinct action
or workflow a user or process might undertake in the system, each
monitor will generate alerts from a limited subset of all alerts it
could generate. While some alert types may be generated by many
types of events, overall distributions of alerts will generally be
distinct for each event type, so given a particular log trace, there
will likely be a limited set of events consistent with the data.
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Let us consider a combination operation C(σ ) that takes a set of
observed alerts σ as input and produces an assignment of likelihood
scores ®eσ for all possible event types ei in the system. Assuming
that only one event takes place during the period and assuming no
compromise, we would expect very few elements of ®eσ to be active
(nonzero), and only one to have a high likelihood value.

Furthermore, if there is no monitor compromise, we would rea-
sonably expect that the results of combining alerts from different
sets of monitors should not strongly conflict with one another. That
is, if we let σM be the set of alerts within σ generated by all mon-
itors in some set M, then C(σM) · C(σN) should be close to 1 for
any M and N, provided that σM , ∅ and σN , ∅. However, if an
adversary were to compromise monitorm and inject or drop alerts
to yield σ′, we would expect the results of combination to diverge,
causing the values of all C(σ′M) ·C(σ′M\m ) to decrease.

We use that observation to devise an approach for detection of
monitor compromise. Given a large set of event and alert types,
we track the values of C(σM) for all σM in a system over time by
combining all observed alerts for a system within a time window
[t , t + ∆w ). For each timestamp, we apply outlier detection tech-
niques to identify candidates for monitor compromise, and consider
a monitor to be compromised if some C(σM) deviate significantly
from all others for a sufficient duration, wherem ∈ M.

We use Dempster-Shafer theory (DST) [4] for the operator C
because of its versatility in combining heterogeneous evidence and
its inherent ability to handle uncertainty and conflicting evidence.
We train basic belief assignments (BBAs) for each alert type a using
labeled event occurrence data during normal activity such that the
plausibility for each singleton event ei is its conditional probability
P(ei |a). To gracefully handle noisy data, which can manifest as
conflict during combination, we use Yager’s rule for combination [4]
and add a small amount of uncertainty (uniform noise) to the BBAs.

3 ONGOINGWORK
We are currently evaluating our approach on simulated data and a
real dataset, into which we inject monitor compromise based on real
and theoretical attacks. Our initial results show that our technique
can be used to detect various types of monitor compromise.
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