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ABSTRACT

In this paper, we analyze the security of cyber-physical systems

using the ADversary VIew Security Evaluation (ADVISE) meta mod-

eling approach, taking into consideration the efects of physical

attacks. To build our model of the system, we construct an ontol-

ogy that describes the system components and the relationships

among them. The ontology also deines attack steps that represent

cyber and physical actions that afect the system entities. We apply

the ADVISE meta modeling approach, which admits as input our

deined ontology, to a railway system use case to obtain insights

regarding the system’s security. The ADVISE Meta tool takes in a

systemmodel of a railway station and generates an attack execution

graph that shows the actions that adversaries may take to reach

their goal. We consider several adversary proiles, ranging from

outsiders to insider staf members, and compare their attack paths

in terms of targeted assets, time to achieve the goal, and probability

of detection. The generated results show that even adversaries with

access to noncritical assets can afect system service by intelligently

crafting their attacks to trigger a physical sequence of efects. We

also identify the physical devices and user actions that require more

in-depth monitoring to reinforce the system’s security.

KEYWORDS

cyber-physical systems; physical attack; attack graph; ontology

1 INTRODUCTION

In order to analyze the security risk of cyber-physical systems, de-

signers have often focused on modeling the cyber aspect of such

systems by enumerating the possible attacks that can be used to
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compromise the system and cause a cascading impact in the physi-

cal world. However, physical attacks on cyber-physical systems that

target devices are just as concerning. The Metcalf power station

sniper attack [16, 19] is a prime example of such physical attacks.

Further, physical attacks coupled with a synchronized cyber efort

are commonly overlooked by threat analyses. Therefore, in this

paper, we focus on modeling of physical attacks and their conse-

quences, and apply our approach to a railway station case study to

provide insights into the security of the system.

The ADversary VIew Security Evaluation (ADVISE) meta model-

ing approach [4] uses a variant of attack graphs to perform a formal,

repeatable, and auditable analysis of system designs. Attack graphs

are used to analyze the system by enumerating all the possible

attack steps that an adversary may take to achieve a goal [9, 10].

However, traditional attack graphs do not evaluate useful prob-

abilistic metrics like the most common attack vector for a given

adversary, expected time to complete an attack, and expected cost

to the defender. The ADVISE approach builds a richer attack graph,

termed the attack execution graph (AEG), which models additional

details about attacks in order to facilitate a more comprehensive

and quantitative analysis of an adversary’s attack path.

The process of building such attack graphs, however, requires a

lot of manual efort by an expert practitioner. The practitioner needs

to enumerate the possible attack steps for each system component

and connect those attack steps together. To reduce the practitioner’s

efort, the ADVISE meta modeling approach relies on an ontology

that represents a high-level system model using familiar atomic

elements and semantic relationships among them. The ontology

allows the practitioner to specify attack steps just once during

the construction of the ontology; subsequently, the only changes

that a practitioner needs to make are updates to the system model

instance. The attack graph is automatically generated by reasoning

on the system model instance that is based on the ontology [4].

In this work, we constructed an ontology of cyber-physical sys-

tem components and relationships, and a set of atomic attack steps

that apply to those ontology elements. This ontology is the irst step

towards formally deining a library of physical attacks that can be

reused by other system case studies. We then evaluate the efects of
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physical attacks on a railway transit system by using the ADVISE

meta modeling approach. Given the cyber-physical architecture

of our studied system, we constructed a system instance diagram

composed of instances of components and relationships from the

ontology. We used the ADVISE Meta tool to reason on that system

instance diagram and automatically generate an AEG [12, 13]. We

also speciied information about the threat models and quantitative

metrics that we want to calculate. Given that information, the tool

simulates an adversary’s decision-making and outputs the calcu-

lated metrics. From the simulation results, we identify (1) which

adversaries pose the biggest threat to the system, (2) which attacks

are most likely to happen, and (3) what additional defenses should

we deploy to identify and prevent certain attacks.

The outline of the rest of the paper is as follows. We explain the

ADVISE meta modeling approach and the railway transit system

case study in Section 2. In Section 3, we describe the ontology and

other input components into the ADVISE Meta tool. Section 4 de-

scribes the system evaluation performed using the model described

in Section 3. In Section 5, we detail the related work in the domain

of cyber-physical system modeling for security analysis. Section 6

describes our plans for future work. We conclude in Section 7.

2 PRELIMINARIES

In this section, we give an introduction to the ADVISE tool and its

evolution. We also describe our case study of the railway transit

system that we use in this paper.

2.1 ADVISE Meta Modeling Approach

The ADVISE formalism provides an executable, quantiiable se-

curity model in the form of an attack execution graph (AEG). In

addition to the typical attack graph, the AEG includes details about

the attack in terms of its cost, time to complete, probability of suc-

cess, and probability of detection. In recent years, the ADVISE tool

has been extended to include a meta model [4], which contains

a higher-level system diagram, adversary proiles, and security

metrics. From an ADVISE meta model, the ADVISE Meta tool gen-

erates an AEG using an ontology of components, relationships,

and atomic attack steps. The ontology serves as a knowledge base

that describes the system entities and the deinitions of attacks.

Unlike vulnerability databases, ontologies allow practitioners to

automatically derive where and how attacks may be applicable to a

given system. The ADVISE Meta tool uses the ontology to reason

about the entities in the system diagram to generate an AEG. In the

next section, we will describe the components of the ADVISE meta

model and how they are combined together to create the AEG.

2.2 Case Study: Railway Transit System

Attacks on railway transit systems can have signiicant impact,

ranging from loss of service to derailment. For example, a teenager

once rewired a television remote control to communicate with

wireless switch junctions, causing the derailment of a train and

injury of twelve people [1]. Railway staf also pose a risk to the

system’s security. That was illustrated by the 2006 case in which

traic engineers hacked into a Los Angeles signal system, causing

major traic disruption [6].
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Figure 1: The general modeling approach. The numbered

bubbles represent the order in which we describe the difer-

ent inputs to the ADVISE Meta tool.

We have gained deep knowledge and understanding about the

physical security challenges faced by railway transit system opera-

tors through a project partnership with a national transportation

provider. In this paper, we focus on the physical security of a railway

station. The railway station is a set of spaces containing devices.

The devices control the movement of trains (e.g., signaling, traction

power) and people (e.g., escalators, roller shutters). Other devices

control the environment of the station and track (e.g., fan, water

chiller). The environment of a space also afects the functioning of

devices and movement of the people. For example, high tempera-

tures can cause a device to overheat and trip, or cause a ire that

will result in evacuation of the commuters.

The two main assets that an adversary would target are the

trains and the commuters within a station. For example, afecting

the movement of trains includes delaying trains to afect service

revenue, and acceleration of trains to endanger human lives. Tar-

geting the movement of people can cause mass evacuation and

chaos, which can lead to signiicant injuries caused by a panicking

crowd. Afecting the system environment might consist of creating

ire or smoke within the station or tunnel. In the next section, we

will deine the adversary goal more speciically by relating it to

properties of speciic devices.

Our threat model involves the adversary’s moving to rooms in

the station to access devices. The person then performs actions on

the devices. In the next section, we describe these actions as attack

steps that are formally deined in an ontology. Within the same

threat model, we can deine diferent types of adversary proiles

based on their skills, their system access, and their preferences

for remaining undetected. We describe the diferent adversaries in

more detail in the next section.

3 MODELING APPROACH

The central component of our approach uses the ADVISE Meta

tool which takes in a number of user-speciied inputs, and outputs

an AEG. Figure 1 illustrates this process. First, we construct an

ontology that models (i) the cyber-physical system entities and re-

lationships, and (ii) the attack steps that can be performed on those

entities. This ontology is generic and can be applied to any cyber-

physical system. Next, we construct a system instance diagram that

describes the speciic case study in terms of the types of entities and

relationships that are present in the railway station. Those types

of entities and relationships are given by the ontology. Then, we
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deine the threat model by enumerating the adversary proiles and

deining the adversary goals. The tool then uses the ontology to

reason on the system instance diagram, generating an AEG that

leads to the speciied goals. It also simulates the decision-making

of each adversary proile by using a discrete-event, game-theory-

based algorithm, and outputs the chosen attack path. We analyze

those attack paths to obtain insights regarding the system security.

We now describe each of the user-speciied inputs.

3.1 Ontology

The ontology consists of two components: (1) a representation of

cyber-physical systems, and (2) a library of attack steps that apply

to that representation. We irst start with a general conceptual

understanding of the systems that we want to model, that will then

drive the creation of classes and relations in the ontology.

Conceptually, we describe the system in terms of three non-

disjoint domains: physical, cyber, and information. We distinguish

among the three domains because they represent the levels at which

human cognition perceives information [5]. The physical domain

consists of devices and spaces. Devices are located in spaces. The

cyber domain consists of hosts and network topology. Correspond-

ingly, the hosts are devices (physical domain) that contain control

software that transmit and receive digital data, and the network

topology consists of cables connecting hosts that allow the trans-

mission of bits. Lastly, the information domain consists of digital

data such as control data and logs. These digital assets are repre-

sented as bits of information. By describing the system using the

three domains, we can deine actions (attack steps) that afect the

system at diferent levels of abstraction. We can also drill down

into low-level details about the efects of those actions.

We translate our general conceptual understanding into the

ontology, shown graphically in Figure 2. The ontology deines com-

ponent classes and kinds of relations that are deinable between

instances of the classes. The component classes use inheritance to

describe specialization of types. The ontology’s inheritance allows

us to automatically infer information regarding child classes by

deductive reasoning. More speciically, child classes inherit rela-

tionships and properties (attacks) from their parent classes [11].

The ontology also consists of generic attack steps that can be ap-

plied to the classes. By deining a library of attack steps, we use the

ontology to reason on a system instance diagram and automatically

enumerate which attack steps can be applied to the system entities.

In particular, we use the ontology’s multiple inheritance feature to

derive all the entities that are vulnerable to a speciic attack. We

illustrate this feature with a small example. In our ontology in Fig-

ure 2, we can deine an attack A that is applicable to any physical

device. We model this by attaching A to the class Device. From

the inheritance structure, this implies that A is applicable to all

subclasses of Device, including ProgrammableDevice (or cyber

hosts). This simpliies the job of creating an attack graph, since the

practitioner does not need to recall that a host is also a Device and

thus susceptible to attacks on physical devices. The ontology thus

allows us to generate a complete AEG with respect to the deined

attack steps, removing the chance for manual human error.

In Table 1, we deine attack steps that can be applied at the level

of abstraction corresponding to each of the three domains that we

SpaceDivider

Device

ProgrammableDevice

Space

Device

Room

Non-room

loggedAccess,unloggedAccess

affectsPower,affectsTemperature

controls

contains

Asset

DigitalAsset

Data

Log

ControlData

networkConnection

has

Figure 2: Our constructed ontology. Black boxes are compo-

nent classes. Arcs with illed arrowheads represent inheri-

tance, and labeled arcs are relationships.

deined earlier. Some of the attack steps (Overheat, PowerOf,

AfectsPower, and AfectsTemperature) are not actual attacks

performed by an adversary, but instead model the physical conse-

quences of certain actions.

Table 1: List of attack steps deined in ontology

Domain Attack Step Ontology Class

Physical

Move Space

Damage Device

DirectControl Device

Overheat Device

PowerOf Device

AfectsPower Device

AfectsTemperature Device

Cyber

Login ProgrammableDevice

RemoteControl Device

NetworkMove ProgrammableDevice

Information
DelMovementToken Data

AddMovementToken Data

3.2 System Instance Diagram

We constructed a system instance diagram that represents our rail-

way station case study. The system architecture and the relations

between the devices are modeled using the constructs we deined in

our ontology. We chose a set of representative rooms shown below:

• PSC: Houses cyber hosts that station operators use to moni-

tor and control the devices in the station.

• Server Room: Houses the Programmable Logic Controllers

(PLCs) that control the operation of other devices, and the

Building Access Control (BAC) server that manages accesses

to the doors and roller shutters.

• Traction Power (Power Room): Houses the equipment

that controls the power to the track.

• Water Chiller (Environment Control Room): Houses

equipment that controls the temperature in the station.
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Figure 3: Two views of the system instance diagram. The boxes represent the entities in the railway station. Each box has a

unique name and belongs to a class in the ontology. (a) The physical station architecture. (b) The relations between the devices.

Table 2: The access elements possessed by diferent adversary proiles at the start of the simulation.

Physical Access Asset Access
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3.3 Adversary Proiles and Goals

We now deine the adversary proiles and their goals. Each attack

step requires some preconditions to be satisied before it can be

attempted, e.g., the adversary’s skill in an activity, or the adver-

sary’s access permissions to a system component. So depending

on the adversary proile, some of the attack steps that we deined

earlier can or cannot be attempted. The accesses that an adversary

may have are (1) permissions to perform theMove attack step to

enter a Space , and (2) permissions to perform the DirectControl,

RemoteControl, Login, orNetworkMove attack steps to control

an Asset. We deine three types of adversary proiles: an Outsider

adversary with skills to break door access locks, a PrivilegedIn-

sider adversary who has gained access to all types of legitimate

access cards, and an Insider adversary. Table 2 shows the accesses

that those adversaries possess.

We deine three goals that the adversary wants to achieve: (1)

killing power to the railway track (TrackPowOf), (2) locking the

station exits (LockExits), and (3) controlling the temperature in

the station (TempCtrlOf). The irst goal afects the movement of

trains (Track) and thus disrupts system service. The second goal

afects the commuters’ movements (BAC Server). Finally, the third

goal afects the station’s environment (Temp Control).

4 EVALUATION

We input our system instance diagram and adversary models into

the ADVISE Meta tool, which uses our deined ontology to reason

on the inputs to generate an AEG. We use the tool to simulate the

actions taken by an adversary proile and calculate metric values

for that set of actions. The metrics we deine are (i) the total cost

of performing attacks, (ii) the number of attack steps needed to

accomplish a goal, and (iii) the fraction of attack steps that are

likely to be detected. These metrics describe the diferent trade-

ofs that an adversary will make when attacking the system. We

analyze the resulting metric values to obtain insights regarding

(i) the possible sequence of actions taken by an adversary, (ii) the

assets that require further protection, (iii) the user actions that

require further monitoring, and (iv) the set of adversaries that pose

the highest risk to the system’s security.

Experiment Setup. For each attack step, we deined (1) the cost for

the adversary to attempt the attack step and (2) the probability of the
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attack step’s being detected by a defender. These settingswill impact

the adversary’s decision-making process when choosing between

diferent attack paths. The cost of the attack step is quantiied

in terms of the expert knowledge and physical efort required to

execute the attack. The cost is an integer score ranging from 1 to

10, where 1 represents the least efort and 10 represents the most

efort. The probability that an attack will be detected by a defender

is a loating value that ranges from 0 to 1. We assume that as a

preliminary defense, the defender can monitor the devices through

CCTV cameras in the rooms, and the state of the commuters by

direct observation. Based on our understanding of the system and

possible attacks, we set the parameters as shown in Table 3.

Table 3: The cost incurred by an adversary and detection

probability of each attack step. Damaging powerboards have

a cost of 8, and damaging other devices have a cost of 10.

M
o
v
e

D
am

ag
e

D
ir
ec
tC
o
n
tr
o
l

R
em

o
te
C
o
n
tr
o
l

L
o
g
in

A
d
d
M
o
v
em

en
t

D
el
M
o
v
em

en
t

Cost 1 8 or 10 5 4 3 5 5

Detection Prob 0 1 0 0 0 1 1

Table 4 shows the resulting metrics for each adversary proile

(with the exception of the PrivilegedInsider). We discuss the in-

sights garnered from the results, identifying areas in the system

that require additional defenses.

Attack Paths. We can see from the simulation results that al-

though the building access control system allows staf to move only

into rooms within their job roles, staf are still capable of afecting

other devices in diferent rooms to achieve the goal. In particular,

the environment control staf can cut power to the track despite not

having access to the power room or the server room that controls

the device logic. This attack path may have been easily missed by a

human analyst who did not consider the physical consequences of

changing a device’s temperature. Thus, it is important not to over-

look noncritical staf members or assume that a malicious action

will remain contained within a room. The efects of the noncritical

staf member’s actions, however, take much longer to propagate

through the system than those of other adversaries. So the practi-

tioner has more time to catch the attack before the adversary’s goal

is achieved. Thus, it is crucial to implement detection mechanisms

that monitor changes in physical processes.

Attack Steps. We ind from our simulation results that the Dam-

age action is the most commonly used one by all the adversary

proiles and often targets powerboards. Since the outsider, cleaner,

and station operators have physical access to all rooms, they can

perform the Damage action on the appropriate device to achieve

any goal. Thus, the cost to damage equipment, speciically power-

boards, should be increased via additional physical guards. We also

note that none of the insiders were detected unless they physi-

cally damaged equipment. So a specialized detection mechanism

is needed to distinguish between malicious actions and normal ac-

tions. In particular, we need to monitor physical movements, host

logins, and actions performed using the control software.

Adversary Stealth. During an adversary’s decision-making pro-

cess, he or she may have a choice of several attack paths. An adver-

sary chooses one of the attack paths based on his or her preference

of either minimizing the cost of the attack path or reducing the

risk of being detected by a defender. We want to investigate which

attack paths (that correspond to using diferent access cards) an

adversary will take, given difering levels of stealthiness.

In our previous work [2], we developed an intrusion detector for

malicious movement that raises an alarm when a logged movement

deviates from the normal behavior associated with the access card

used. In that work, we simulated malicious movement for various

insiders and calculated the percentage of malicious movements

that were detected. That percentage is used as an estimation of the

detection probability of the Move attack step for diferent main-

tenance staf. In particular, the probability of detecting malicious

movement by server staf, environment control staf, and power

staf are 0.5, 0.6, and 0.95 respectively.

We represent the adversary’s stealthiness by a preference weight.

A weight of 0 implies that the adversary does not mind being

detected; a higher weight implies that the adversary cares more

about remaining undetected. We vary the preference weight from 0

to 11 and observe which access cards the PrivilegedInsider uses

to achieve the TrackPowOf goal.1 The simulation results show

that for weights between 0 and 5, the adversary uses the power staf

member card to access the power room. If the weight is between

6 and 10, the environment control staf member card is used to

access the environment control room. Finally, if the weight is above

10, the server staf member card is used to access the server room.

This shows that the stealthiest adversaries, i.e., those with higher

weights, will use a server staf’s access card. We should thus focus

our eforts on detecting the subsequent actions of that adversary

that include logging into the hosts and using the control software

to perform actions.

In conclusion, the adversaries that pose the biggest threat to the

system in terms of shorter time (or path length) to achieve goals

and lower detection probability are the server staf and station

operators. When considered in combination, the outsider together

with the access control staf may also pose a problem, since the

access control staf member is able to grant access to the station.

5 RELATEDWORK

Analyzing system security requires signiicant manual efort from

the practitioner. One way to reduce the practitioner’s burden is to

use a common ontology or library that can be applied to similar

systems. Ontologies have been used to build a knowledge base of

vulnerabilities and known attacks [15, 20]. The tool P2CySeMoL [8]

also builds up a meta model that is based on a library of attack

steps and countermeasures. Well-established tools such as the TVA-

tool [9, 10] use a predeined library of exploits. However, these

ontologies and libraries focus solely on the cyber domain, and thus

are lacking when applied to cyber-physical systems.

Chen et al. [3] analyzed a train control system and a mobile trans-

portation app using attack trees and a FailureModes, Vulnerabilities

and Efects (FMVEA) analysis. They showed that the key challenges

1The preference weight can be any integer value, but we will see later that values
above 11 do not afect the results.
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Table 4: Calculated metrics for each adversary proile. The diferent possible attack steps (excluding actions that represent

physical consequences) are listed. The goals are numbered: 1 for TrackPowOf, 2 for TempCtrlOf, and 3 for LockExits.

Outsider Cleaner Station Op Env Ctrl Server Power Access Ctrl

Cost 10 or 12 10 or 12 9,10, or 12 7,10, or 12 7 or 9 7,10, or 12 7 or 9

Detect 3 1 0 or 1 0 or 1 0 0 or 1 0 or 1

Attack Path

Length
7ś15 7ś15 7ś15 8ś15 6ś8 6ś8 6ś9

Attack

Steps

Damage:

PB 2 or 4,

TempCtrl, PowSys

Damage:

PB 2 or 4,

TempCtrl,

PowSys

Damage:

PB 2 or 4,

TempCtrl, PowSys

Login: Host

CtrlSoftware: PLC

RemoteCtrl:

PowSys, TempCtrl

Damage:

PB 2, TempCtrl

DirectCtrl:

PB 2, TempCtrl

Damage: PB 3

Login: PLC

RemoteCtrl:

PowSys,

TempCtrl

Damage:

PB 4, PowSys

DirectCtrl:

PB 4, PowSys

Damage:

PB 3

DirectCtrl:

BAC Server

Goals 1,2,3 1,2,3 1,2,3 1,2 1,2,3 1 3

to analyzing a cyber-physical system’s security are identifying at-

tacks from both the cyber and physical domain and tracing the

consequences of attacks in the physical domain. For example, Mar-

ronne et al. [14] combined two Uniied Modeling Language (UML)

models, one addressing physical protection of a system and the

other addressing cyber protection, to perform vulnerability analysis

in critical infrastructure systems. They used a small use case of

a railway trackside shelter to evaluate their approach. The TREs-

PASS project [18] developed an attack navigator [17] that takes in

adversary proiles and a library of attack patterns to generate an

attack tree. These attack patterns can span the cyber, human, and

physical domains. Our approach also uses a high-level language to

represent basic concepts and attack steps. However, the ontology

that we built aims to address the physical consequences of attacks

in far more detail. To address the efects of attacks in the physical

domain, Peter et al. [7] extended attack graphs to model the details

of physical processes in a system. They modeled the overheating

of a transformer in a substation and show the key attack steps that

need to be performed. However, their approach is very speciic and

diicult to apply to a diverse set of devices in a complex setting.

6 DISCUSSION AND FUTUREWORK

In this paper, we constructed an ontology for cyber-physical sys-

tems. The ontology also has attack steps that model the physical

consequences of actions. Since the attack steps in the AEG are

obtained from that ontology, the AEG is only as complete as the on-

tology. Therefore, we plan to extend our ontology to model various

types of devices and possible attack steps and their consequences.

Furthermore, in this work, we model physical consequences as

attack steps that are performed by an adversary.We plan to separate

the physical consequences from the attack steps by composing

the AEG with stochastic activity networks (SANs), fault trees, or

hybrid attack graphs. Currently, it is diicult to perform such a

composition with the current ADVISE tool. However, we envision

that this feature will be part of future releases of the tool.

We also intend to extend our case study to model the full railway

station. Since a good fraction of the rooms have similar devices and

relationships among them, the ontology that we deine here can

be applied to those components, reducing the amount of modeling

efort needed.

We envision that our approach can be used by railway transporta-

tion organizations or similar cyber-physical systems’ organizations

in order to provide insight into the threats posed by diferent ad-

versary proiles and suggest countermeasures to put in place.

7 CONCLUSION

Designers often evaluate the security vulnerabilities of cyber-

physical systems purely from the cyber perspective without taking

into consideration the cascade efect of physical consequences or

actions that can impact the system negatively. We used the AD-

VISE meta modeling approach to analyze a railway station. We

constructed an ontology that describes the assets and spaces in

the system, and physical relations between them. We also deined

attack steps that model the physical efects, such as causing damage,

device overheating, and powering of. Using the ADVISE tool, we

generated an AEG for a small portion of the railway station and

simulated diferent adversary proiles moving through the station.

The results show that adversaries can intelligently target a device

within their reach, causing a cascade that leads to a bad system

state. When detection mechanisms are present in the system, the

model shows how adversaries adjust their strategy in response,

thus providing practitioners with insight into what other defense

mechanisms are needed to harden the security of a system.
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